CBSE Sample Question Paper 1

Solution

Section A

1. H.C.F and L.C.M of two numbers can be same only if two numbers are equal. Hence their difference will be zero.
2. Let roots of equation: $a x^{2}+b x+c=0$ are α and $-\alpha$, then sum of roots

$$
\begin{array}{lc}
\therefore & \alpha+(-\alpha)=-\frac{b}{a} \\
\Rightarrow & 0=\frac{-b}{a} \\
\Rightarrow & \mathrm{~b}=0 \tag{1}
\end{array}
$$

Using factorization method of splitting the middle term, we can solve the quadratic equation as follows:

$$
\begin{array}{ll}
& 2 x^{2}-x-6=0 \\
\Rightarrow & 2 x^{2}-4 x+3 x-6=0 \\
\Rightarrow & \left(2 x^{2}-4 x\right)+(3 x-6)=0 \\
\Rightarrow & 2 x(x-2)+3(x-2)=0 \tag{1/2}\\
\Rightarrow & (x-2)(2 x+3)=0 \\
\Rightarrow & x-2=0 \text { or } 2 x+3=0 \\
\Rightarrow & x=2 \text { or } x=-\frac{3}{2}
\end{array}
$$

Thus, $x=2$ and $x=-\frac{3}{2}$ are the two roots of the $2 x^{2}-x-6=0$ equation.
Option (b) is correct.
3. Here, $\mathrm{a}_{1}=-1, \mathrm{~b}_{1}=2$ and $\mathrm{a}_{2}=\frac{1}{2}, \mathrm{~b}_{2}=-\frac{1}{4}$.

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}=\frac{-1}{\frac{1}{2}}=-2, \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{2}}=\frac{2}{-\frac{1}{4}}=-8 \\
\Rightarrow & \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}
\end{array}
$$

$\Rightarrow \quad$ The given pair of linear equations has a unique solution.
Hence, the given statement is true.

OR
We have, $\quad x=2$ and $y=3$
Let us substitute the above values in the equation $2 x+3 y-13=0$, we get
LHS $=(2 \times 2)+(3 \times 3)-13=4+9-13=13-13=0$
RHS $=0$
Since, LHS $=$ RHS, the required linear equation is $2 x+3 y-13=0$.
Hence, the correct option is (a).
4. We have

$$
\text { and } \quad \begin{align*}
\mathrm{l} & =\text { last term }=185 \\
\mathrm{~d} & =\text { common difference } \\
& =9-5=4
\end{align*}
$$

$\Rightarrow 9$ th term from the end $\quad=185+(9-1)(-4)$
$[\because$ nth term from the end $=1+(n-1)(-d)]$

$$
=185+8 \times(-4)
$$

$$
\begin{equation*}
=185-32=\mathbf{1 5 3} \tag{1/2}
\end{equation*}
$$

5. It is not possible to construct a pair of tangents from a point P situated at a distance of 3 cm from the centre of a circle of radius 3.5 cm .

$$
\begin{equation*}
3<3.5=\text { radius of circle } \tag{1}
\end{equation*}
$$

6. When two dice are thrown together, then the possible outcomes of the experiment are listed in the table below:

	1	2	3	4	5	6
1	$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
2	$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
3	$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
4	$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
5	$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
6	$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

So, the number of possible outcomes $=6 \times 6=36$
The outcome favourable to the event "Getting the same number on both dice" is denoted by A, are $(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)$ (see table), i.e., the number of outcomes favourable to $\mathrm{A}=6$.

$$
\text { Thus, } \quad P(A)=\frac{6}{36}=\frac{\mathbf{1}}{\mathbf{6}}
$$

Section B

7. True, because $n(n+1)(n+2)$ will always be divisible by 6 , as at least one of the factors will be divisible by 2 and at least one of the factors will be divisible by 3 .

OR
The first number that is divisible by 8 between 200 and 500 is 208 and the last number that is divisible by 8 are 496 .

So, the sequence will be 208, 216, 224 \qquad 496.

Common difference $d=8$
First term $a=208$
Let there be n terms is the sequence
Using the formula $a_{n}=a+(n-1) d$
Where

$$
\begin{aligned}
& a_{n}=496, a=208 \text { and } d=8 \\
& 496=208+(n-1)(8) \\
& (n-1) 8=288 \\
& n-1=36 \\
& n=37
\end{aligned}
$$

Hence, between 200 and 500 there are 37 integers that are divisible by 8.
8. Let α, β be the zeros of the polynomial $f(x)=x^{2}-8 x+k$. Then,
and

$$
\begin{gather*}
\alpha+\beta=-\left(\frac{-8}{1}\right)=8 \\
\alpha \beta=\frac{\mathrm{k}}{1}=\mathrm{k} \tag{1}
\end{gather*}
$$

It is given that

$$
\begin{align*}
\alpha^{2}+\beta^{2} & =40 \\
\Rightarrow(\alpha+\beta)^{2}-2 \alpha \beta & =40 \\
\Rightarrow \quad 8^{2}-2 \mathrm{k} & =40 \\
\Rightarrow \quad 2 \mathrm{k} & =64-40 \\
\Rightarrow \quad 2 \mathrm{k} & =24 \\
\Rightarrow \quad \mathrm{k} & =12 \tag{1}\\
& O \text { OR }
\end{align*}
$$

$$
[\because \alpha+\beta=8 \text { and } \alpha \beta=\mathrm{k}]
$$

Let the polynomial be

$$
\mathrm{p}(\mathrm{x})=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}
$$

Its given that, Sum of zeroes $=\frac{21}{8} \Rightarrow \frac{-b}{a}=\frac{21}{8}$

Assuming $a=1$,

$$
\Rightarrow \quad \mathrm{b}=-\frac{21}{8}
$$

We also know that, Product of zeroes $=\frac{5}{16}$

$$
\Rightarrow \quad \frac{\mathrm{c}}{\mathrm{a}}=\frac{5}{16}
$$

Assuming $a=1$,

$$
\begin{array}{ll}
\Rightarrow & c=\frac{5}{16} \\
\text { Now, } & a=1, b=-\frac{21}{8}, c=\frac{5}{16}
\end{array}
$$

Hence, the required quadratic polynomial $=a x^{2}+b x+c$
Substituting the values of a, b and c in the above equation, we get,

$$
x^{2}-\frac{21}{8} x+\frac{5}{16}
$$

Multiply the equation by 16 .

$$
\begin{equation*}
\Rightarrow \quad 16 x^{2}-42 x+5 \tag{1}
\end{equation*}
$$

Hence, the required quadratic polynomial is $16 x^{2}-42 x+5$
9. Lets the ten's digit be x and unit's digit $=y$

$$
\text { Number }=10 x+y
$$

$$
10 x+y=4(x+y)
$$

$$
\begin{align*}
& 6 x=3 y \\
& 2 x=y \tag{1}
\end{align*}
$$

$$
10 x+y=3 x y
$$

Again $\quad 10 x+y=3 x y$

$$
10 x+2 x=3 x(2 x)
$$

$$
12 x=6 x^{2}
$$

$$
\mathrm{x}=2 \quad \quad \quad(\text { rejecting } \mathrm{x}=0)
$$

$$
\begin{equation*}
2 x=y \tag{1}
\end{equation*}
$$

$$
y=4
$$

\therefore The required number is 24
10. Given

$$
\begin{equation*}
x=a \cos \theta, y=b \sin \theta \tag{1}
\end{equation*}
$$

$$
\begin{align*}
b^{2} x^{2}+a^{2} y^{2}-a^{2} b^{2} & =b^{2}(a \cos \theta)^{2}+a^{2}(b \sin \theta)^{2}-a^{2} b^{2} \\
& =a^{2} b^{2} \cos ^{2} \theta+a^{2} b^{2} \sin ^{2} \theta-a^{2} b^{2} \\
& =a^{2} b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-a^{2} b^{2} \\
& =a^{2} b^{2}-a^{2} b^{2}=0 \quad\left(\because \sin ^{2} \theta+\cos ^{2} \theta=1\right) \tag{1}
\end{align*}
$$

11. Since

$$
\begin{align*}
\angle \mathrm{C} & =90^{\circ} \\
\therefore \quad \angle \mathrm{A}+\angle \mathrm{B} & =180^{\circ}-\angle \mathrm{C}=90^{\circ} \tag{1}\\
\text { Now, } \sin ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~B} & =\sin ^{2} \mathrm{~A}+\sin ^{2}\left(90^{\circ}-\mathrm{A}\right) \\
& =\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1 \tag{1}
\end{align*}
$$

12. Given, total surface area of solid hemisphere $=462 \mathrm{~cm}^{2}$

$$
\begin{array}{rlrl}
\Rightarrow & 3 \pi \mathrm{r}^{2} & =462 \mathrm{~cm}^{2} \tag{1}\\
3 \times \frac{22}{7} \times \mathrm{r}^{2} & =462 \\
\mathrm{r}^{2} & =49 \\
\Rightarrow \quad r & =7 \mathrm{~cm}
\end{array}
$$

Volume of solid hemisphere $=\frac{2}{3} \pi \mathrm{r}^{3}$

$$
\begin{align*}
& =\frac{2}{3} \times \frac{22}{7} \times 7 \times 7 \times 7 \\
& =718.66 \mathrm{~cm}^{3} \tag{1}
\end{align*}
$$

Section C

13. For the maximum number of columns, we have to find the HCF of 616 and 32 .

Now, since $616>32$, we apply division lemma to 616 and 32 .

$$
\begin{equation*}
\text { We have, } 616=32 \times 19+8 \tag{1}
\end{equation*}
$$

Here, remainder $8 \neq 0$.
So, we again apply division lemma to 32 and 8 .

$$
\text { We have, } 32=8 \times 4+0
$$

Here, remainder is zero. So, $\operatorname{HCF}(616,32)=8$
Hence, maximum number of columns is 8 .
14. Let $a-d$, a and $a+d$ be the zeros of the polynomial $f(x)$. Then,

$$
\begin{array}{cl}
& \text { Sum of the zeros }=\frac{\text { coefficient of } x^{2}}{\text { coefficient of } x^{3}} \\
\Rightarrow & (a-d)+a+(a+d)=-\frac{(-p)}{1} \\
\Rightarrow & 3 a=p \\
\Rightarrow & a=\frac{p}{3} \tag{1}
\end{array}
$$

Since a is a zero of the polynomial $f(x)$. Therefore,

$$
\begin{aligned}
\mathrm{f}(\mathrm{a}) & =0 \\
\Rightarrow \quad \mathrm{a}^{3}-\mathrm{pa}^{2}+\mathrm{qa}-\mathrm{r} & =0
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow\left(\frac{\mathrm{p}}{3}\right)^{3}-\mathrm{p}\left(\frac{\mathrm{p}}{3}\right)^{2}+\mathrm{q}\left(\frac{\mathrm{p}}{3}\right)-\mathrm{r}=0 \\
& \Rightarrow \quad \mathrm{p}^{3}-3 \mathrm{p}^{3}+9 \mathrm{pq}-27 \mathrm{r}=0 \\
& \Rightarrow \quad\left[\because \mathrm{a}=\frac{\mathrm{p}}{3}\right] \\
& \Rightarrow \quad 2 \mathrm{p}^{3}-9 \mathrm{pq}+27 \mathrm{r}=0 \text {, which is the required condition } \tag{1}
\end{align*}
$$

15. The given system of equations may be written as

$$
\begin{aligned}
& a x+b y-(a-b)=0 \\
& b x+a y-(a+b)=0
\end{aligned}
$$

By cross-multiplication, we have

$$
\begin{align*}
& \frac{x}{b-(a-b)}=\frac{-y}{a}-(a-b) \tag{1}\\
& \frac{x}{a}-(a+b) \\
\Rightarrow \quad & \frac{x}{b \times-(a+b)-(-a) \times-(a-b)}=\frac{x}{a \times-(a+b)-b \times-(a-b)}=\frac{1}{-a^{2}-b^{2}} \\
\Rightarrow \quad & \frac{x}{-b(a+b)-a(a-b)}=\frac{x}{-a(a+b)+b(a-b)}=\frac{1}{-\left(a^{2}+b^{2}\right)}=\frac{-y}{-a^{2}-b^{2}}=\frac{1}{-\left(a^{2}+b^{2}\right)} \\
\Rightarrow \quad & \frac{x}{-\left(a^{2}+b^{2}\right)}=\frac{y}{\left(a^{2}+b^{2}\right)}=\frac{1}{-\left(a^{2}+b^{2}\right)} \\
\Rightarrow \quad & -\frac{\left(a^{2}+b^{2}\right)}{-\left(a^{2}+b^{2}\right)}=1 \text { and } y=\frac{\left(a^{2}+b^{2}\right)}{-\left(a^{2}+b^{2}\right)}=-1 \tag{2}
\end{align*}
$$

Hence, the solution of the given system of equations is $\mathrm{x}=1, \mathrm{y}=-1$.
OR
Clearly, the given equations are not linear equations in the variables u and v but can be reduced to linear equations by an appropriate substitution.
If we put $u=0$ in either of the two equations, we get $v=0$.
So, $u=0, v=0$ form a solution of the given system of equations.
To find the other solutions, we assume that $u \neq 0, v \neq 0$.
Now, $u \neq 0, v \neq 0 \Rightarrow u v \neq 0$.
On dividing each one of the given equations by uv, we get

$$
\begin{equation*}
\frac{6}{\mathrm{v}}+\frac{3}{\mathrm{u}}=7 \tag{i}
\end{equation*}
$$

12

CBSE Sample Question Paper 1

$$
\begin{equation*}
\frac{3}{\mathrm{v}}+\frac{9}{\mathrm{u}}=11 \tag{ii}
\end{equation*}
$$

Taking $\frac{1}{\mathrm{u}}=\mathrm{x}$ and $\frac{1}{\mathrm{v}}=\mathrm{y}$, the above equations become

$$
\begin{align*}
& 3 x+6 y=7 \tag{iii}\\
& 9 x+3 y=11 \tag{iv}
\end{align*}
$$

Multiplying equation (iv) by 2 , the above system of equations becomes

$$
\begin{gather*}
3 x+6 y=7 \tag{v}\\
18 x+6 y=22 \tag{vi}
\end{gather*}
$$

Substracting equation (vi) from equation (v), we get

$$
\begin{aligned}
& & -15 \mathrm{x} & =-15 \\
\Rightarrow & & \mathrm{x} & =1
\end{aligned}
$$

Putting $x=1$ in equation (iii), we get

$$
\begin{array}{lrl}
& 3+6 y & =7 \\
\Rightarrow & y & =\frac{4}{6}=\frac{2}{3} \tag{1}\\
\text { Now, } & \mathrm{x} & =1 \\
\Rightarrow & \frac{1}{\mathrm{u}} & =1 \\
\Rightarrow & \mathrm{u} & =1 \\
\text { and, } & \frac{\mathrm{y}}{}=\frac{2}{3} \\
\Rightarrow & \frac{1}{\mathrm{v}} & =\frac{2}{3} \\
\Rightarrow & \mathrm{v} & =\frac{3}{2}
\end{array}
$$

Hence, the given system of equations has two solutions given by
(i) $u=0, v=0$ (ii) $u=1, v=3 / 2$
16. Clearly, the given sequence is an A.P. with first term $a(=54)$ and common differenced $d(=-3)$. Let the sum of n terms be 513. Then,

$$
\begin{array}{rlrl}
\mathrm{S}_{\mathrm{n}} & =513 \\
& & & \tag{1}\\
\Rightarrow & \frac{\mathrm{n}}{2}\{2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}\} & =513 \\
& \Rightarrow & \frac{\mathrm{n}}{2}[108+(\mathrm{n}-1) \times-3] & =513 \\
& \Rightarrow & \mathrm{n}^{2}-37 \mathrm{n}+342 & =0 \\
& \Rightarrow & (\mathrm{n}-18)(\mathrm{n}-19) & =0
\end{array}
$$

$$
\begin{equation*}
\Rightarrow \quad \mathrm{n}=18 \text { or } 19 \tag{1}
\end{equation*}
$$

Here, the common difference is negative. So, 19th term is given by

$$
\begin{equation*}
a_{19}=54+(19-1) \times-3=0 \tag{1}
\end{equation*}
$$

Thus, the sum of 18 terms as well as that of 19 terms is 513.
17. Let $A=\left(x_{1}, y_{1}\right)=(t, t-2), B=\left(x_{2}, y_{2}\right)=(t+2, t+2)$ and $C=\left(x_{3}, y_{3}\right)=(t+3, t)$ be the vertices of a given triangle. Then,

$$
\begin{align*}
& \therefore \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left|\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right| \tag{1}\\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}|\{\mathrm{t}(\mathrm{t}+2-\mathrm{t})+(\mathrm{t}+2)(\mathrm{t}-\mathrm{t}+2)+(\mathrm{t}+3)(\mathrm{t}-2-\mathrm{t}-2)\}| \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}|\{(2 \mathrm{t}+2 \mathrm{t}+4-4 \mathrm{t}-12)\}|=|-4|=4 \text { sq. units } \tag{1}
\end{equation*}
$$

Clearly, area of $\triangle \mathrm{ABC}$ is independent of t.
Alternative Method : We have,

$$
\begin{align*}
& \underbrace{t}_{t-2} \underbrace{t+3}_{t+2} \underbrace{t}_{t-2} \\
& \therefore \quad \text { Area of } \Delta A B C=\frac{1}{2}\left|\begin{array}{c}
\{\mathrm{t}(\mathrm{t}+2)+(\mathrm{t}+2) \mathrm{t}+(\mathrm{t}+3)(\mathrm{t}-2)\} \\
-\{(\mathrm{t}+2)(\mathrm{t}-2)+(\mathrm{t}+3)(\mathrm{t}+2)+\mathrm{t} \times \mathrm{t}\}
\end{array}\right| \tag{1}\\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left|\left(\mathrm{t}^{2}+2 \mathrm{t}+\mathrm{t}^{2}+2 \mathrm{t}+\mathrm{t}^{2}+\mathrm{t}-6\right)-\left(\mathrm{t}^{2}-4+\mathrm{t}^{2}+5 \mathrm{t}+6+\mathrm{t}^{2}\right)\right| \\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}\left|\left(3 \mathrm{t}^{2}+5 \mathrm{t}-6\right)-\left(3 \mathrm{t}^{2}+5 \mathrm{t}+2\right)\right| \tag{1}\\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=\frac{1}{2}|-6-2| \\
& \Rightarrow \quad \text { Area of } \triangle \mathrm{ABC}=4 \text { sq. units } \tag{1}
\end{align*}
$$

Hence, Area of $\triangle A B C$ is independent of t.
18. Let $P(p,-1)$ divide the line segment joining the points $A(1,-3)$ and $B(6,2)$ in the ratio $k: 1$ i.e. $\mathrm{AP}: \mathrm{PB}=\mathrm{k}: 1$.

$$
\begin{gather*}
\bullet \quad \text { Coordinates of } P \text { are }\left(\frac{\mathrm{k} \times 6+1 \times 1}{\mathrm{k}+1}, \frac{\mathrm{k} \times 2+1 \times(-3)}{\mathrm{e}(\mathrm{p},-1)}\right) \text { i. } \mathrm{B}(6,-2)\left(\frac{6 \mathrm{k}+1}{\mathrm{k}+1}, \frac{2 \mathrm{k}-3}{\mathrm{k}+1}\right) \tag{1/2}
\end{gather*}
$$

But P is $(\mathrm{p},-1)$

$$
\begin{align*}
\Rightarrow & \frac{2 \mathrm{k}-3}{\mathrm{k}+1} & =-1 \\
\Rightarrow & 2 \mathrm{k}-3 & =-\mathrm{k}-1 \\
\Rightarrow & 3 \mathrm{k} & =2 \\
\Rightarrow & \mathrm{k} & =\frac{2}{3} . \tag{1}
\end{align*}
$$

\therefore The required ratio is $\frac{2}{3}: 1$ i.e. 2:3 (internally).
Also

$$
\frac{6 \mathrm{k}+1}{\mathrm{k}+1}=\mathrm{p}
$$

Putting $\mathrm{k}=\frac{2}{3}$ in (i), we get

$$
\begin{equation*}
\mathrm{p}=\frac{6 \times \frac{2}{3}+1}{\frac{2}{3}+1}=\frac{5}{\frac{5}{3}}=\frac{5}{1} \times \frac{3}{5}=3 . \tag{1}
\end{equation*}
$$

Hence, $\mathrm{p}=3$
OR
Let the point $\mathrm{M}(11, y)$ divides the line segment joining the points $\mathrm{P}(15,5)$ and $\mathrm{Q}(9,20)$ in the ratio $\mathrm{K}: 1$.

Then the coordinates of M are $\left(\frac{9 \mathrm{~K}+15}{\mathrm{~K}+1}, \frac{20 \mathrm{~K}+5}{\mathrm{~K}+1}\right)$
But the coordinates of M are given as $(11, \mathrm{y})$.

$\Rightarrow \mathrm{M}$ divides the line segment PQ in the ratio 2:1.

$$
\begin{equation*}
\text { Substituting } K=2 \text { in } y=\frac{20 K+5}{K+1} \text {, we get } \tag{1}
\end{equation*}
$$

$$
y=\frac{20(2)+5}{2+1}
$$

$$
\Rightarrow \quad y=\frac{40+5}{3}
$$

$$
\begin{equation*}
\Rightarrow \tag{1}
\end{equation*}
$$

19.

In $\triangle \mathrm{POQ}$, we have
DE || OQ
(Given)
\therefore By Basic Proportionality Theorem, we have

$$
\begin{equation*}
\frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PD}}{\mathrm{DO}} \tag{i}
\end{equation*}
$$

Similarly, in $\triangle \mathrm{POR}$, we have

$$
\begin{equation*}
\mathrm{DF} \| \mathrm{OR} \tag{Given}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{PD}}{\mathrm{DO}}=\frac{\mathrm{PF}}{\mathrm{FR}} \tag{ii}
\end{equation*}
$$

Now, from (i) and (ii), we have

$$
\begin{array}{ll}
& \frac{\mathrm{PE}}{\mathrm{EQ}}=\frac{\mathrm{PF}}{\mathrm{FR}} \\
\Rightarrow \quad & \mathrm{EF} \| \mathrm{QR} \tag{1}
\end{array}
$$

[Applying the converse of Basic Proportionality Theorem in $\triangle \mathrm{PQR}$]
20.

Mark the angles as shown in the figure.
Let $O P$ meet $A B$ at Q.
In $\triangle A Q P$ and $\triangle B Q P$,

$\therefore \quad \triangle \mathrm{AQP} \cong \triangle \mathrm{BQP} \quad$ (SAS congruence rule)
$\therefore \quad \mathrm{AQ}=\mathrm{BQ} \quad$ (c.p.c.t.)
$\angle 3=\angle 4$
(linear pair)
$\Rightarrow \quad 2 \angle 3=180^{\circ}$
$\Rightarrow \quad \angle 3=90^{\circ}$.
\Rightarrow
Hence, OP is the right bisector of AB.

$$
\begin{array}{ll}
\Rightarrow & 17+\mathrm{f}_{1}+32+\mathrm{f}_{2}+19=120 \\
\Rightarrow & \mathrm{f}_{1}+\mathrm{f}_{2}=52 \tag{i}
\end{array}
$$

Given, mean of distribution is 50

$$
\begin{align*}
& \Rightarrow \quad \frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum_{\mathrm{i}}}=50 \\
& \Rightarrow \quad \frac{17 \times 10+\mathrm{f}_{1} \times 30+32 \times 50+\mathrm{f}_{2} \times 70+19 \times 90}{120}=50 \tag{1/2}\\
& \Rightarrow \quad 170+30 \mathrm{f}_{1}+1600+70 \mathrm{f}_{2}+1710=120 \times 50 \\
& \Rightarrow \quad 30 \mathrm{f}_{1}+70 \mathrm{f}_{2}=6000-170-1600-1710 \\
& \Rightarrow \quad 30 \mathrm{f}_{1}+70 \mathrm{f}_{2}=2520 \\
& \Rightarrow \quad 3 \mathrm{f}_{1}+7 \mathrm{f}_{2}=252 \tag{ii}\\
& \text { Multiplying (i) by 3, we get } \\
& \quad 3 \mathrm{f}_{1}+3 \mathrm{f}_{2}=156 \tag{iii}
\end{align*}
$$

Subtracting (iii) from (ii), we get

$$
\begin{aligned}
& 4 \mathrm{f}_{2}=96 \\
\Rightarrow \quad & \mathrm{f}_{2}=24
\end{aligned}
$$

Substituting this value of f_{2} in (i), we get

$$
\begin{aligned}
& \mathrm{f}_{1}+24=52 \\
\Rightarrow \quad & \mathrm{f}_{1}=28 .
\end{aligned}
$$

Hence, $\mathrm{f}_{1}=28$ and $\mathrm{f}_{2}=24$.
OR
Ordinary Frequency Distribution

Daily income $(\mathrm{in} \bar{₹})$	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	Class-mark $\left(\mathrm{x}_{\mathrm{i}}\right)$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-250}{100}$	$\mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}$
$0-100$	12	50	-2	-24
$100-200$	$16=(28-12)$	150	-1	-16
$200-300$	$6=(34-28)$	250	0	0
$300-400$	$7=(41-34)$	350	1	7
$400-500$	$9=(50-41)$	450	2	18
Total	$\mathrm{n}=\Sigma \mathrm{f}_{\mathrm{i}}=50$			$\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-15$

(2)

Using the formula :

$$
\begin{align*}
\text { Mean } & =\mathrm{a}+\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}} \times \mathrm{h} \\
& =250+\frac{(-15)}{50} \times 100 \\
& =250-30 \\
& =220 \tag{1}
\end{align*}
$$

Hence the average daily income is 220.
22. A coin is tossed three times. Sample space is $S=\{$ HHT, HTH, THH, HTT, THT, TTH, HHH, TTT $\}$

There are 8 possible outcomes. $n(S)=8$
The game consists of tossing a coin 3 times.
If one or two heads show. Sweta gets her entry fee back.
If she throws 3 heads, she receives double the entry fees.
If she gets TTT, she loses the entry fees.
(i) Loses the entry.

Out of 8 possible outcomes, only one (TTT) is favorable.

$$
\begin{equation*}
\therefore \quad \mathrm{P}(\text { loses entry })=\frac{1}{8} \tag{1}
\end{equation*}
$$

(ii) gets double entry fee.

Out of 8 possible outcomes, only one (HHH) is favorable.

$$
\begin{equation*}
\mathrm{P}(\text { double entry fees })=\frac{1}{8} \tag{1}
\end{equation*}
$$

(iii) Let $\mathrm{E} b$ event that she just gets her entry fee. Then

$$
\begin{array}{ll}
& E=\{\text { HHT, HTH, THH, HTT, THT, TTH }\} \\
\therefore \quad & n(E)=6
\end{array}
$$

$P($ She just gets her entry fee $)=\frac{n(E)}{n(S)}=\frac{6}{8}=\frac{3}{4}$
OR

Let there be b blue, g green and w white marbles in the jar. Then,

$$
\begin{gather*}
\mathrm{b}+\mathrm{g}+\mathrm{w}=54 \tag{i}\\
\therefore \quad \mathrm{P}(\text { Selecting a blue marble })=\frac{\mathrm{b}}{54}
\end{gather*}
$$

It is given that the probability of selecting a blue marbles is $\frac{1}{3}$.

$$
\begin{aligned}
\frac{1}{3} & =\frac{b}{54} \\
b & =18
\end{aligned}
$$

We have,
$\mathrm{P}($ Selecting a green marble $)=\frac{4}{9}$

$$
\frac{g}{54}=\frac{4}{9}
$$

$\left[\because \mathrm{P}(\right.$ Selecting a green marble $)=\frac{4}{9}$ (Given) $]$

$$
\Rightarrow \quad g=24
$$

Substituting the values of b and g in (i), we get

$$
\begin{align*}
& & 18+24+\mathrm{w} & =54 \\
\Rightarrow & & \mathrm{w} & =12 \tag{1}
\end{align*}
$$

Hence, the jar contains 12 white marbles.

Section D

23. Let total time be n minutes

Total distance covered by thief $=100 \mathrm{n}$ meters
Total distance covered by policeman $=100+110+120+\ldots+(n-1)$ terms

$$
\begin{array}{lrl}
\therefore & 100 \mathrm{n} & =\frac{\mathrm{n}-1}{2}[100(2)+(\mathrm{n}-2) 10] \\
\Rightarrow & 200 \mathrm{n} & =(\mathrm{n}-1)(180+10 \mathrm{n}) \\
\Rightarrow & 10 \mathrm{n}^{2}-30 \mathrm{n}-180 & =0 \\
\Rightarrow & \mathrm{n}^{2}-3 \mathrm{n}-18 & =0 \\
\Rightarrow & (\mathrm{n}-6)(\mathrm{n}+3) & =0 \\
\Rightarrow & \mathrm{n} & =6 \tag{1}
\end{array}
$$

Policeman took $(\mathrm{n}-1)=(6-1)=5$ minutes to catch the thief.
Value : We should never indulge in theft habits.
24.

Given. $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.
To Prove. $\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}$
Construction. Draw $\mathrm{AD} \perp \mathrm{BC}$ and $\mathrm{AM} \perp \mathrm{QR}$.
Proof. We know that the area of triangle $=\frac{1}{2}$ base \times height.

$$
\begin{equation*}
\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AD}}{\frac{1}{2} \mathrm{QR} \times \mathrm{PM}}=\frac{\mathrm{BC}}{\mathrm{QR}} \times \frac{\mathrm{AD}}{\mathrm{PM}} \tag{i}
\end{equation*}
$$

Given $\triangle \mathrm{ABC} \sim \Delta \mathrm{PQR}$

$$
\therefore \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}}
$$

and $\quad \angle \mathrm{B}=\angle \mathrm{Q}$
In $\triangle A B D$ and $\triangle P Q M$,

$$
\begin{align*}
& & \angle \mathrm{B} & =\angle \mathrm{Q} \tag{iii}\\
\text { and } & & \angle \mathrm{ADB} & =\angle \mathrm{PMQ} \tag{2}\\
& \therefore & \triangle \mathrm{ABD} & \sim \triangle \mathrm{PQM} \\
& \therefore & & \frac{\mathrm{AD}}{\mathrm{PM}} \tag{iv}
\end{align*}=\frac{\mathrm{AB}}{\mathrm{PQ}}
$$

From (i), (ii) and (iv), we get

$$
\begin{align*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})} & =\frac{\mathrm{AB}}{\mathrm{PQ}} \times \frac{\mathrm{AB}}{\mathrm{PQ}} \\
& =\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}
\end{align*}
$$

$\left(\right.$ each $\left.=90^{\circ}\right)$
(AA similarity criterion)

From (v) and (ii), we get

$$
\begin{align*}
\frac{\operatorname{ar}(\triangle \mathrm{ABC})}{\operatorname{ar}(\triangle \mathrm{PQR})} & =\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2} \\
& =\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2} \\
& =\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2} . \tag{1}
\end{align*}
$$

PROOF: We have,

$$
\begin{align*}
& \mathrm{BC}^{2}=\mathrm{AC} \times \mathrm{CD} \\
& \Rightarrow \quad \tag{i}\\
& \frac{\mathrm{BC}}{\mathrm{CD}}=\frac{\mathrm{AC}}{\mathrm{BC}}
\end{align*}
$$

Thus, in $\triangle A B C$ and $\triangle B D C$, we have

$$
\begin{array}{llrl}
& & \frac{\mathrm{AC}}{\mathrm{BC}} & =\frac{\mathrm{BC}}{\mathrm{CD}} \\
\text { and, } & & \angle \mathrm{C} & =\angle \mathrm{C} \\
\therefore & & \Delta \mathrm{ABC} & \sim \triangle \mathrm{BDC} \\
\Rightarrow & & \frac{\mathrm{AB}}{\mathrm{BD}} & =\frac{\mathrm{BC}}{\mathrm{DC}} \\
\Rightarrow & \frac{\mathrm{AC}}{\mathrm{BD}}=\frac{\mathrm{BC}}{\mathrm{CD}} \\
\Rightarrow & \frac{\mathrm{AC}}{\mathrm{BC}}=\frac{\mathrm{BD}}{\mathrm{CD}} \tag{ii}
\end{array}
$$

[Common] (2)
[By SAS criterion of similarity]

From (i) and (ii), we get

$$
\begin{array}{ll}
& \frac{\mathrm{BC}}{\mathrm{CD}}=\frac{\mathrm{BD}}{\mathrm{CD}} \\
\Rightarrow \quad & \mathrm{BD}=\mathrm{BC} \tag{1}
\end{array}
$$

25. In order to show that,

$$
\frac{1}{(\operatorname{cosec} x+\cot x)}-\frac{1}{\sin x}=\frac{1}{\sin x}-\frac{1}{(\operatorname{cosec} x-\cot x)}
$$

It is sufficient to show

$$
\begin{align*}
& \frac{1}{(\operatorname{cosec} x+\cot x)}+\frac{1}{(\operatorname{cosec} x-\cot x)}=\frac{1}{\sin x}+\frac{1}{\sin x} \tag{2}\\
& \frac{1}{(\operatorname{cosec} x+\cot x)}+\frac{1}{(\operatorname{cosec} x-\cot x)}=\frac{2}{\sin x} \tag{i}
\end{align*}
$$

Now, LHS of above is

$$
\begin{equation*}
\frac{1}{(\operatorname{cosec} x+\cot x)}+\frac{1}{(\operatorname{cosec} x-\cot x)}=\frac{(\operatorname{cosec} x-\cot x)+(\operatorname{cosec} x+\cot x)}{(\operatorname{cosec} x-\cot x)(\operatorname{cosec} x+\cot x)} \tag{1}
\end{equation*}
$$

$$
=\frac{2 \operatorname{cosec} x}{\operatorname{cosec}^{2} x-\cot ^{2} x}
$$

$$
\left[\because(a+b)(a-b)=a^{2}-b^{2}\right]
$$

$$
\begin{equation*}
=\frac{2 \operatorname{cosec} \mathrm{x}}{1}=\frac{2}{\sin \mathrm{x}}=\text { RHS of }(\mathrm{i}) \tag{2}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{1}{(\operatorname{cosec} x+\cot x)}+\frac{1}{(\operatorname{cosec} x-\cot x)}=\frac{1}{\sin x}+\frac{1}{\sin x} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{(\operatorname{cosec} x+\cot x)}-\frac{1}{\sin x}=\frac{1}{\sin x}-\frac{1}{(\operatorname{cosec} x-\cot x)} . \tag{1}
\end{equation*}
$$

26. Let $A B$ be the tree of height h metres standing on the bank of a river. Let C be the position of man standing on the opposite bank of the river such that $\mathrm{BC}=\mathrm{xm}$. Let D be the new position of the man. It is given that $C D=40 \mathrm{~m}$ and the angles of elevation of the top of the tree at C and D are 60° and 30°, respectively, i.e.,

(1)

$$
\left.\begin{array}{lc}
\text { In } \angle A C B \text {, we have } \\
\tan 60^{\circ}=\frac{A B}{B C} \\
\Rightarrow & \tan 60^{\circ}=\frac{h}{x} \\
\Rightarrow & \sqrt{3}=\frac{h}{x} \\
\Rightarrow & x=\frac{h}{\sqrt{3}}
\end{array}\right] \text { (1) }
$$

In $\angle \mathrm{ADB}$, we have

$$
\begin{array}{ll}
& \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{BD}} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{\mathrm{h}}{\mathrm{x}+40} \tag{ii}\\
\Rightarrow & \sqrt{3} \mathrm{~h}=\mathrm{x}+40
\end{array}
$$

$$
\text { Substituting } x=\frac{h}{\sqrt{3}} \text { in equation (ii), we get }
$$

$$
\sqrt{3} \mathrm{~h}=\frac{\mathrm{h}}{\sqrt{3}}+40
$$

$$
\begin{array}{ll}
\Rightarrow & \sqrt{3} \mathrm{~h}-\frac{\mathrm{h}}{\sqrt{3}}=40 \\
\Rightarrow & \frac{3 \mathrm{~h}-\mathrm{h}}{\sqrt{3}}=40 \\
\Rightarrow & \frac{2 \mathrm{~h}}{\sqrt{3}}=40 \\
\Rightarrow & \mathrm{~h}=\frac{40 \times \sqrt{3}}{2} \\
\Rightarrow & \mathrm{~h}=20 \sqrt{3}=20 \times 1.732=34.64 \mathrm{~m} \tag{1}
\end{array}
$$

Substituting h in equation (i), we get $x=\frac{20 \sqrt{3}}{\sqrt{3}}=20$ metres.
Hence, the height of the tree is 34.64 m and the width of the river is 20 m .
27.

Steps of Construction

Step 1: Draw a line segment $B C=6 \mathrm{~cm}$.
Step II : With centre B and radius 4 cm draw an arc.
Step III: With centre C and radius 9 cm draw another arc which intersects the previous at A .

Step IV: Join BA and CA. ABC is the required triangle.
Step V: Through B, draw an acute angle $\angle \mathrm{CBX}$ on the side opposite to vertex A.

Step VI : Locate three arcs B_{1}, B_{2} and B_{3} on $B X$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}$.
Step VII: Join $\mathrm{B}_{2} \mathrm{C}$.
Step VIII Draw $B_{3} C^{\prime} \| B_{2} C$ intersecting the extended line segment $B C$ at C^{\prime}.
Step IX: Draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$ intersecting the extended line segment BA to A^{\prime}. Thus, $\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle $\left(\Delta \mathrm{A}^{\prime} \mathrm{BC}^{\prime} \sim \Delta \mathrm{ABC}\right)$.

Justification:

$$
\begin{array}{lrl}
\because & \mathrm{B}_{3} \mathrm{C}^{\prime} \| \mathrm{B}_{2} \mathrm{C} \\
\frac{\mathrm{BC}}{\mathrm{CC}^{\prime}} & =\frac{2}{1} \\
\text { Now, } & \frac{\mathrm{BC}^{\prime}}{\mathrm{BC}} & =\frac{\mathrm{BC}+\mathrm{CC}^{\prime}}{\mathrm{BC}} \\
& =1+\frac{\mathrm{CC}^{\prime}}{\mathrm{BC}}=1+\frac{1}{2}=\frac{3}{2} \tag{1}\\
\text { Again, } & & \mathrm{CC}^{\prime} \| \mathrm{CA}
\end{array}
$$

The 2 triangles are not congruent because the sides of first are $4,6,9$ while of 2 nd are 6,9 and 13.5
28.

Radius of semicircle PSR $=\frac{1}{2} \times 10 \mathrm{~cm}=5 \mathrm{~cm}$
Radius of semicircle $\mathrm{RTQ}=\frac{1}{2} \times 3 \mathrm{~cm}=1.5 \mathrm{~cm}$
Radius of semicircle $\mathrm{PAQ}=\frac{1}{2} \times 7 \mathrm{~cm}=3.5 \mathrm{~cm}$
Perimeter of shaded region

$$
\begin{aligned}
= & \text { Circumference of semicircle PSR } \\
& + \text { Circumference of semicircle RTQ } \\
& + \text { Circumference of semicircle PAQ. } \\
= & {\left[\frac{1}{2} \times 2 \pi \times 5+\frac{1}{2} \times 2 \pi \times 1.5 \frac{1}{2} \times 2 \pi \times 3.5\right] } \\
= & \pi[5+1.5+3.5]=3.14 \times 10=31.4 \mathrm{~cm}
\end{aligned}
$$

The radius of circle $=21 \mathrm{~cm}$.
An arc ACB subtends an angle of 60° at the centre

$$
\begin{array}{cc}
& \mathrm{OA}=\mathrm{OB}=21 \mathrm{~cm} \\
\therefore & \angle \mathrm{OAB}=\angle \mathrm{OBA} \\
\therefore & \\
\therefore & \triangle \frac{1}{2}\left(180^{\circ}-60^{\circ}\right)=60^{\circ} \\
\therefore \mathrm{OAB} \text { is equilateral, }
\end{array}
$$

(i)

Length of the arc $=\frac{60^{\circ}}{360^{\circ}} \times$ circumference

$$
=\frac{60}{360} \times 2 \times \frac{22}{7} \times 21 \mathrm{~cm}=22 \mathrm{~cm}
$$

Area of the sector $=\frac{60}{360} \times$ area of the circle

$$
=\frac{60}{360} \times \frac{22}{7} \times 21 \times 21 \text { sq. } \mathrm{cm}=231 \text { sq. } \mathrm{cm}
$$

(ii)
(iii) Area of segment

$$
\begin{align*}
& =\text { Area of sector }- \text { Area of equilateral } \triangle A O B \text { of side } 12 \mathrm{~cm} \\
& =\left(231-\frac{\sqrt{3}}{4} \times 21 \times 21\right) \text { sq. } \mathrm{cm} \\
& =\left(231-\frac{1.732 \times 441}{4}\right) \text { sq. } \mathrm{cm} \\
& =(231-190.953) \text { sq. } \mathrm{cm}=40.047 \text { sq. } \mathrm{cm} \tag{1}
\end{align*}
$$

29.

Let $B C=r \mathrm{~cm}$,
$\mathrm{DE}=10 \mathrm{~cm}$

CBSE Sample Question Paper 1

Since, B is the mid-point of $A D$ and $B C$ is parallel to $D E$, therefore C is the mid-point of $A E$.
i.e., $\quad \mathrm{BC}=\frac{1}{2} \mathrm{DE}$

$$
=\frac{1}{2} \times 10=5 \mathrm{~cm}
$$

or

$$
\mathrm{r}=5 \mathrm{~cm}
$$

$\frac{\text { Volume of cone }}{\text { Volume of the frustum }}=\frac{\frac{1}{3} \pi r^{2}(\mathrm{AB})}{\frac{1}{3} \pi(\mathrm{BD})\left[\mathrm{R}^{2}+\mathrm{r}^{2}+\mathrm{Rr}\right]}$

$$
=\frac{\frac{1}{3} \pi(5)^{2}\left(\frac{\mathrm{~h}}{2}\right)}{\frac{1}{3} \pi\left(\frac{\mathrm{~h}}{2}\right)\left[(10)^{2}+(5)^{2}+10 \times 5\right]}
$$

$$
=\frac{25}{100+25+50}
$$

$$
\begin{equation*}
=\frac{25}{175}=\frac{1}{7} \tag{1}
\end{equation*}
$$

\therefore The required ratio $=1: 7$.
30.

Marks	Cumulative Frequency	Marks	Cumulative Frequency
Less than 5	4	More than 0	100
Less than 10	10	More than 5	96
Less than 15	20	More than 10	90
Less than 20	30	More than 15	80
Less than 25	55	More than 20	70
Less than 30	77	More than 25	45
Less than 35	95	More than 30	23
Less than 40	100	More than 35	5

Hence, median marks $=24 \quad$ OR Let the assumed mean be $\mathrm{A}=25$ and $\mathrm{h}=5$.
Calculation of mean

Variate x_{i}	Frequency \mathbf{f}_{i}	Deviations $\mathbf{d}_{\mathrm{i}}=\mathbf{x}_{\mathbf{i}}-25$	$\mathrm{u}_{\mathrm{i}}=\frac{\mathbf{x}_{\mathrm{i}}-\mathbf{2 5}}{\mathbf{5}}$	$\mathrm{f}_{\mathrm{i}} \mathbf{u}_{\mathrm{i}}$
5	20	-20	-4	-80
10	43	-15	-3	-129
10	75	-10	-2	-150
20	67	-5	-1	-67
25	72	0	0	0
30	45	5	1	45
35	39	10	2	78
40	9	15	3	27
45	8	20	4	32
50	6	25	5	30
$\mathrm{n}=\Sigma \mathrm{f}_{\mathrm{i}}=384$				$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-214$

$$
\begin{align*}
& \text { We have, } \\
& \mathrm{N}=384, \mathrm{~A}=25, \mathrm{~h}=5 \text { and } \sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}=-214 \\
& \therefore \quad \text { Mean }=\overline{\mathrm{X}}=\mathrm{A}+\mathrm{h}\left\{\frac{1}{\mathrm{~N}} \sum \mathrm{f}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}}\right\} \\
& \Rightarrow \quad \text { Mean }=25+5 \times\left(\frac{-214}{384}\right) \\
& =25-2.786=22.214 \tag{4}
\end{align*}
$$

