# CBSE Solved Paper 2019

## Mathematics Class X

Time: 3 hrs MM: 80

#### General Instructions

- (ii) All questions are compulsory.
- (ii) The question paper consists of **30** questions divided into four sections— A, B, C and D.
- (iii) Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each, Section C contains 10 questions of 3 marks each and Section D contains 8 questions of 4 marks each.
- (iv) There is no overall choice. However, an internal choice has been provided in two questions of 1 mark each, two questions of 2 marks each, four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
- (v) Use of calculators is **not** permitted.

#### Section A

1. Find the value of k for which the quadratic equation kx(x-2) + 6 = 0 has two equal roots. (1)

. . .

2. Find the number of terms in the A.P.: 18,  $15\frac{1}{2}$ , 13,..., -47. (1)

**3.** Evaluate:

 $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}$ 

 $\mathbf{OR}$  (1)

Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.

- 4. Let  $\triangle$  ABC  $\sim$   $\triangle$  DEF and their areas be respectively, 64 cm<sup>2</sup> and 121 cm<sup>2</sup>. If EF = 15.4 cm, find BC.
- 5. Find the distance between the points (a, b) and (-a, -b). (1)



**6.** Find a rational number between  $\sqrt{2}$  and  $\sqrt{7}$ .

$$\mathbf{OR}$$
 (1)

Write the number of zeroes in the end of a number whose prime factorization is  $2^2 \times 5^3 \times 3^2 \times 17$ .

#### Section B

7. How many multiples of 4 lie between 10 and 205?

$$\mathbf{OR}$$
 (2)

Determine the A.P. Whose third term is 16 and 7<sup>th</sup> term exceeds the 5<sup>th</sup> term by 12.

- 8. The point R divides the line segment AB, where A(-4, 0) and B(0, 6) such that AR =  $\frac{3}{4}$ AB.
  - Find the coordinates of R. (2)
- 9. Use Euclid's division algorithm to find the HCF of 255 and 867. (2)
- **10.** Three different coins are tossed simultaneously. Find the probability of getting exactly one head.
- 11. A card is drawn at random from a pack of 52 playing cards. Find the probability of drawing a card which is neither a spade nor a king. (2)
- **12.** Find the solution of the pair of equations:

$$\frac{3}{x} + \frac{8}{y} = -1; \frac{1}{x} - \frac{2}{y} = 2, x, y \neq 0$$

$$\mathbf{OR}$$
 (2)

Find the value (s) of k for which the pair of equations  $\begin{cases} kx + 2y = 3\\ 3x + 6y = 10 \end{cases}$ 

has a unique solution.

#### Section C

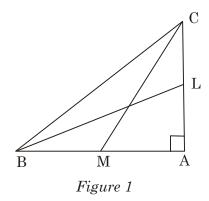
- 13. Prove that  $(3 + 2\sqrt{5})$  is an irrational number, given that  $\sqrt{5}$  is an irrational number.
  - (3)
- 14. A train travels a distance of 480 km at a uniform speed. If the speed had been 8 km/hr less, then it would have taken 3 hours more to cover the same distance. Find the usual speed of the train.
- 15. If  $\alpha$  and  $\beta$  are the zeroes of the quadratic polynomial  $f(x) = x^2 4x + 3$ , find the value of  $(\alpha^4\beta^2 + \alpha^2\beta^4)$ .
- **16.** Prove that :

$$(\sin \theta + 1 + \cos \theta) (\sin \theta - 1 + \cos \theta). \sec \theta \csc \theta = 2$$

$$\mathbf{OR}$$
(3)

$$\sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} = 2 \cos \sec \theta$$

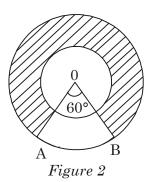
17. In what ratio does the point P(-4, y) divide the line segment joining the points A(-6, 10) and B(3, -8)? Hence find the value of y.


$$\mathbf{OR}$$
 (3)

Find the value of p for which the points (-5, 1), (1, p) and (4, -2) are collinear.



(3)


- 18. ABC is a right triangle in which  $\angle B = 90^{\circ}$ . If AB = 8 cm and BC = 6 cm, find the diameter of the circle inscribed in the triangle. (3)
- **19.** In figure 1, BL and CM are medians of a  $\triangle$  ABC right-angled at A. Prove that 4 (BL<sup>2</sup> + CM<sup>2</sup>) = 5 BC<sup>2</sup>.



OR

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals. (3)

**20.** In figure 2, two concentric circles with centre O, have radii 21 cm and 42 cm. If  $\angle AOB = 60^{\circ}$ , find the area of the shaded region.



**21.** A cone of height 24 cm and radius of base 6 cm is made up of modelling clay. A child reshapes it in the form of a sphere. Find the radius of the sphere and hence find the surface area of this sphere.

$$OR$$
 (3)

A farmer connects a pipe of internal diameter 20 cm from a canal into a cylindrical tank in his field which is 10 m in diameter and 2 m deep. If water flows through the pipe at the rate of 3 km/hr, in how much time will the tank be filled?

22. Calculate the mode of the following distribution:

| Class:     | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 |
|------------|---------|---------|---------|---------|---------|
| Frequency: | 4       | 7       | 20      | 8       | 1       |



### Section D

**23.** Solve for x:

$$\frac{1}{2a+b+2x} = \frac{1}{2a} + \frac{1}{b} + \frac{1}{2x}; x \neq 0, x \neq \frac{-2a-b}{2}, a, b \neq 0$$

$$\mathbf{OR}$$
(4)

The sum of the areas of two squares is 640 m<sup>2</sup>. If the difference of their perimeters is 64 m, find the sides of the square.

- **24.** If the sum of the first p terms of an A.P. is the same as the sum of its first q terms (where p  $\neq$  q), then show that the sum of first (p + q) terms is zero (4)
- **25.** In  $\triangle$  ABC (Figure 3), AD  $\perp$  BC. Prove that AC<sup>2</sup> = AB<sup>2</sup> + BC<sup>2</sup> 2BC × BD

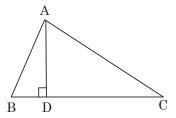



Figure3

**26.** A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.

$$\mathbf{OR}$$
 (4)

There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.

27. Construct a triangle with sides 5 cm 6 cm and 7 cm and then another triangle whose sides

are 
$$\frac{3}{5}$$
 of the corresponding sides of the first triangle. (4)

**28.** Prove that:

$$\sin^8\theta - \cos^8\theta = (1 - 2\cos^2\theta)(1 - 2\sin^2\theta\cos^2\theta) \tag{4}$$

- 29. A container opened at the top and made up of a metal sheet, is in the form of a frustum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container, at the rate of ₹ 50 per litre. Also find the cost of metal sheet used ot make the container, if it costs ₹ 10 per 100 cm² (Take  $\pi = 3.14$ )
- **30.** Calculate the mean of the following frequency distribution:

| Class:     | 10 - 30 | 30 - 50 | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 |
|------------|---------|---------|---------|---------|----------|-----------|
| Frequency: | 5       | 8       | 12      | 20      | 3        | 2         |
|            |         | 0       | R       |         |          |           |

OR (4) table gives production yield in kg per hectare of wheat of 100 farms of a

The following table gives production yield in kg per hectare of wheat of 100 farms of a village:

| Production yield | 40 - 45 | 45 - 50 | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 |
|------------------|---------|---------|---------|---------|---------|---------|
| (kg/ hectare):   |         |         |         |         |         |         |
| Number of farms: | 4       | 6       | 16      | 20      | 30      | 24      |

Change the distribution to a 'more than type' distribution, and draw its ogive.

