Solution
 Section A

1. $\mathrm{kx}(\mathrm{x}-2)+6=0$
$\Rightarrow \mathrm{kx}^{2}-2 \mathrm{kx}+6=0$
On Comparing $a x^{2}+b x+c=0$
$\mathrm{a}=\mathrm{k}, \mathrm{b}=-2 \mathrm{k}, \mathrm{c}=6$
\because Roots of the given equation are equal,
$\therefore \mathrm{D}=0$
$b^{2}-4 a c=0$
$\Rightarrow(-2 \mathrm{k})^{2}-4 \times \mathrm{k} \times 6=0$
$\Rightarrow 4 \mathrm{k}^{2}-24 \mathrm{k}=0 \Rightarrow 4 \mathrm{k}(\mathrm{k}-6)=0$
$\Rightarrow \mathrm{k}-6=0$
$\Rightarrow \mathrm{k}=6$
2. Given, first term (a) $=18$
last term $(1)=-47$
Common difference $(\mathrm{d})=15 \frac{1}{2}-18$
$=\frac{31}{2}-18=\frac{31-36}{2}=\frac{-5}{2}$
Let the number of terms in A.P be n
$\because \mathrm{l}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$-47=18+(n-1) \times\left(\frac{-5}{2}\right)$
$\Rightarrow-47=18-\frac{5}{2} n+\frac{5}{2}$
$\Rightarrow-47=-\frac{5}{2} n+\frac{41}{2}$
$\Rightarrow-\frac{5}{2} \mathrm{n}=-47-\frac{41}{2}$
$\Rightarrow-\frac{5}{2} \mathrm{n}=\frac{-94-41}{2}$
$\Rightarrow-5 \mathrm{n}=-135 \Rightarrow \mathrm{n}=\frac{135}{5}=27$
Hence, the number of terms in A.P $=27$
3. $\frac{\tan 65^{\circ}}{\cot 25^{\circ}}=\frac{\tan (90-25)^{\circ}}{\cot 25^{\circ}}$
$\frac{\cot 25^{\circ}}{\cot 25^{\circ}} \quad[\because \tan (90-\theta)=\cot \theta]$
$=1$

OR

$$
\begin{align*}
\sin 67^{\circ}+\cos 75^{\circ} & =\sin (90-23)^{\circ}+\cos (90-15)^{\circ} \tag{1/2}\\
& =\cos 23^{\circ}+\sin 15^{\circ} \quad[\because \cos (90-\theta)=\sin \theta \& \sin (90-\theta)=\cos \theta \tag{1/2}
\end{align*}
$$

Hence, required value is
$\cos 23^{\circ}+\sin 15^{\circ}$
4. $\because \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}$
$\therefore \frac{\text { area of }(\triangle \mathrm{ABC})}{\text { area of }(\triangle \mathrm{DEF})}=\frac{(\mathrm{BC})^{2}}{(\mathrm{EF})^{2}}$ (by conversion of thales theorem)
Given, area of $(\triangle \mathrm{ABC})=64 \mathrm{sq} \mathrm{cm}$,
area of $(\triangle \mathrm{DEF})=121 \mathrm{sq} . \mathrm{cm}$ and $\mathrm{EF}=15.4 \mathrm{~cm}$
$\therefore \frac{64}{121}=\frac{(\mathrm{BC})^{2}}{(15.4)^{2}}$
$\Rightarrow \frac{\mathrm{BC}}{15.4}=\sqrt{\frac{64}{121}}$
$\Rightarrow \frac{\mathrm{BC}}{15.4}=\frac{8}{11} \Rightarrow \mathrm{BC}=\frac{8 \times 15.4}{11}=11.2 \mathrm{~cm}$
Hence, $B C=11.2 \mathrm{~cm}$.
5.

Distance between two points $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{(a+a)^{2}+(b+b)^{2}}$
$=\sqrt{(2 a)^{2}+(2 b)^{2}}=\sqrt{4 a^{2}+4 b^{2}}=\sqrt{4\left(a^{2}+b^{2}\right)}=2 \sqrt{a^{2}+b^{2}}$
6. $\because \sqrt{2}=1.414$
and $\sqrt{7}=2.645$
\therefore Rational number between $\sqrt{2}$ and $\sqrt{7}=2$
OR
$\Rightarrow 2^{2} \times 5^{3} \times 3^{2} \times 17=2 \times 2 \times 5 \times 5 \times 5 \times 3 \times 3 \times 17$

$$
\begin{equation*}
=10 \times 10 \times 15 \times 51=76500 \tag{1/2}
\end{equation*}
$$

Hence, the number of zeroes in the end $=2$

SECTION-B

7. Let the number of multiples of 4 lie between 10 and 205 be n.
\therefore first multiples (a) $=12$
\& last multiples $(1)=204$
Common difference $(\mathrm{d})=4$
$\because \mathrm{l}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$204=12+(n-1) 4$
$\Rightarrow 4(\mathrm{n}-1)=204-12$
$\Rightarrow 4(\mathrm{n}-1)=192 \Rightarrow(\mathrm{n}-1)=\frac{192}{4}=48$
$\Rightarrow \mathrm{n}=48+1=49$
Hence, required number of multiples $=49$.

OR

\Rightarrow we know that $\mathrm{n}^{\text {th }}$ term of AP
$a_{n}=a+(n-1) d$
where $\mathrm{a}=$ first term $\& \mathrm{~d}=$ common difference
So, $a_{3}=a+(3-1)$
$a_{3}=a+2 d$
$16=a+2 d \quad$ (Given $3^{\text {rd }}$ term is 16)
$a+2 d=16$
Also, $\mathrm{a}_{7}=\mathrm{a}+(7-1) \mathrm{d}$

$$
\begin{equation*}
a_{7}=a+6 d \tag{ii}
\end{equation*}
$$

Similarly $\mathrm{a}_{5}=\mathrm{a}+(5-1) \mathrm{d}$

$$
\begin{equation*}
a_{5}=a+4 d \tag{iii}
\end{equation*}
$$

Given that
$7^{\text {th }}$ term exceed the $5^{\text {th }}$ term by 12
$7^{\text {th }}$ term -5 th term $=12$
$a_{7}-a_{5}=12$
$\Rightarrow \mathrm{a}+6 \mathrm{~d}-\mathrm{a}-4 \mathrm{~d}=12 \quad[$ from equation (ii) \& (iii) $]$
$\Rightarrow 2 \mathrm{~d}=12 \Rightarrow \mathrm{~d}=\frac{12}{2}=6$
putting the value of ' d ' in equation (i), we get
$a+2 \times 6=16$
$\Rightarrow \mathrm{a}+16-12=4$
Hence, first term of A.P. $=4$
Second term of A.P. $=$ First term + Common difference $=4+6=10$
Third term of A.P. $=$ Second term + Common difference $=10+6=16$
And So On,
So, the A.P. is $4,10,16$, ----
8. Given, $\mathrm{AR}=\frac{3}{4} \mathrm{AB}$

$\frac{\mathrm{AR}}{\mathrm{AB}}=\frac{3}{4}$
$\mathrm{R}(\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{mx}_{2}-\mathrm{nx}_{1}}{\mathrm{~m}+\mathrm{n}}, \frac{\mathrm{my}_{2}-\mathrm{ny}_{1}}{\mathrm{~m}+\mathrm{n}}\right)=\left(\frac{3 \times 0-4 \times-4}{3+4}, \frac{3 \times 6-4 \times 0}{3+4}\right)$
$=\left(\frac{16}{7}, \frac{18}{7}\right)$
\therefore Required coordinate of point $\mathrm{R}=\left(\frac{16}{7}, \frac{18}{7}\right)$
9. By using Euclid's division leema

$$
a=b q+r
$$

where, $\mathrm{a}>\mathrm{b}$
So, $\mathrm{a}=867$ and $\mathrm{b}=255$
$867=255 \times 3+102$
here, $r \neq 0$, Hence, $a=255$ and $b=102$
Now, $255=102 \times 2+51$
Here, $r \neq 0$, Hence, $a=102$ and $b=51$
$102=51 \times 2+0$
Here, r = 0
So, HCF of $(867,251)=51$
10. Number of possible out comes $=8$
$\{(\mathrm{H}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{H}, \mathrm{T}),(\mathrm{H}, \mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{T})(\mathrm{T}, \mathrm{T}, \mathrm{H}) \&(\mathrm{~T}, \mathrm{~T}, \mathrm{~T})\}$
Number of favourable outcomes $=3$
$\{(\mathrm{H}, \mathrm{T}, \mathrm{T}),(\mathrm{T}, \mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{T}, \mathrm{H})\}$
\therefore Probability $(\mathrm{p})=\frac{\text { favourable outcomes }}{\text { possible outcomes }}=\frac{3}{8}$
Hence, probability of getting exactly one head $=\frac{3}{8}$
11. Number of possible outcomes $=52$

Number of favourable outcomes $=13+3=16$
\therefore Probability $(\mathrm{p})=\frac{\text { favourable outcomes }}{\text { possible outcomes }}=\frac{16}{52}=\frac{4}{13}$
Hence, probability of card which is neither a spade nor a king $=\frac{4}{13}$
12. $\frac{3}{\mathrm{x}}+\frac{8}{\mathrm{y}}=-1$
$\frac{1}{x}-\frac{2}{y}=2$
On multiplying equation (ii) by 4 and adding equation (i)

$$
\begin{align*}
& \frac{3}{x}+\frac{8}{y}=-1 \\
& \frac{+\frac{4}{x}-\frac{8}{y}=8}{\frac{3}{x}+\frac{4}{x}=-1+8}=\frac{7}{x}=7 \tag{1}\\
& \Rightarrow \quad x=\frac{7}{7}=1
\end{align*}
$$

Putting the value of x in equation (ii), we get
$\frac{1}{1}-\frac{2}{y}=2$
$\frac{-2}{y}=2-1 \Rightarrow \frac{-2}{y}=1 \Rightarrow y=-2$
Hence, $x=1$ and $y=-2$

Given :
$\Rightarrow \mathrm{kx}+2 \mathrm{y}=3$
$k x+2 y-3=0$
Comparing with $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=0$
$\therefore \mathrm{a}_{1}=\mathrm{k}, \mathrm{b}_{1}=2$ and $\mathrm{c}_{1}=-3$
Also, $3 x+6 y=10$

$$
\begin{equation*}
3 x+6 y-10=0 \tag{ii}
\end{equation*}
$$

Comparing with $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=0$
$a_{2}=3, b_{2}=6$ and $c_{2}=-10$
As per question
Equations has unique solution
$\therefore \frac{\mathrm{a}_{1}}{\mathrm{a}_{2}} \neq \frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}$ $\frac{\mathrm{k}}{3} \neq \frac{2}{6}$
$\Rightarrow \frac{\mathrm{k}}{3} \neq \frac{1}{3}$
$\Rightarrow \mathrm{k} \neq 1$
So, for all values of k except 1 .

SECTION-C

13. If possible, let $\mathrm{a}=(3+2 \sqrt{5})$ be a rational number

On squaring both sides, we get
$\mathrm{a}^{2}=(3+2 \sqrt{5})^{2}$
$\Rightarrow \mathrm{a}^{2}=9+20+12 \sqrt{5}$
$\Rightarrow \mathrm{a}^{2}=29+12 \sqrt{5}$
$\Rightarrow \sqrt{5}=\frac{a^{2}-29}{12}$
[1]
since ' a ' is a rational number,
$\therefore \frac{\mathrm{a}^{2}-29}{12}$ is also a rational number
$\Rightarrow \sqrt{5}$ is a rational number
but It is given that $\sqrt{5}$ is an irrational number.
Hence, it is a contradiction
So, $3+2 \sqrt{5}$ is an irrational number.
14. Distance travelled by train $=480 \mathrm{~km}$

Let the usual speed of train be $x \mathrm{~km} / \mathrm{h}$
\therefore Time taken for the journey $=\frac{480}{\mathrm{x}}$ hours
Given, speed is decreased by $8 \mathrm{~km} / \mathrm{h}$.
So, the new speed of train $=(x-8) \mathrm{km} / \mathrm{h}$
\therefore Time taken for the journey $=\frac{480}{x-8}$ hours
According to the question,
$\frac{480}{x-8}-\frac{480}{x}=3$
$480\left(\frac{x-x+8}{x(x-8)}\right]=3$
$\Rightarrow \frac{8}{x^{2}-8 \mathrm{x}}=\frac{1}{160}$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}=1280$
$\Rightarrow \mathrm{x}^{2}-8 \mathrm{x}-1280=0$
$\Rightarrow \mathrm{x}^{2}-40 \mathrm{x}+32 \mathrm{x}-1280=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-40)+32(\mathrm{x}-40)=0$
$\Rightarrow(\mathrm{x}-40)(\mathrm{x}+32)=0$
$x-40=0 \quad \& \quad x+32=0$
$\mathrm{x}=40 \quad \mathrm{x}=-32$ (Not possible)
\therefore Usual speed of train $=40 \mathrm{~km} / \mathrm{h}$
15. $f(x)=x^{2}-4 x+3$
$\because \alpha \& \beta$ are the Zeros of $f(x)$
$\therefore \mathrm{f}(\mathrm{x})=0$
$\mathrm{x}^{2}-4 \mathrm{x}+3=0$
$\Rightarrow \mathrm{x}^{2}-3 \mathrm{x}-\mathrm{x}+3=0$
$\Rightarrow \mathrm{x}(\mathrm{x}-3)-1(\mathrm{x}-3)=0$
$\Rightarrow(\mathrm{x}-3)(\mathrm{x}-1)=0$
$\therefore \mathrm{x}-3=0 \Rightarrow \mathrm{x}=3$
and $\mathrm{x}-1=0 \Rightarrow \mathrm{x}=1$
$\therefore \alpha=3$ and $\beta=1$ or $\alpha=1$ and $\beta=3$
when $\alpha=3 \& \beta=1$
$\therefore \alpha^{4} \beta^{2}+\alpha^{2} \beta^{4}=(3)^{4}(1)^{2}+(3)^{2}(1)^{4}=81+9=90$
16. L.H.S. : $(\sin \theta+\cos \theta)(\sin \theta-1+\cos \theta) . \sec \theta \operatorname{cosec} \theta$

$$
\begin{align*}
& =\{(\sin \theta+\cos \theta)+1(\sin \theta+\cos \theta)-1\} \cdot \sec \theta \operatorname{cosec} \theta \\
& =\left\{(\sin \theta+\cos \theta)^{2}-(1)^{2}\right\} \sec \theta \operatorname{cosec} \theta \quad\left[\because(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\mathrm{a}^{2}-\mathrm{b}^{2}\right] \tag{1}\\
& =\left\{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1\right\} \frac{1}{\cos \theta} \frac{1}{\sin \theta} \quad\left[\because \operatorname{cosec} \theta=\frac{1}{\sin \theta} \text { and } \because \sec \theta=\frac{1}{\cos \theta}\right] \\
& =\frac{\{1+2 \sin \theta \cos \theta-1\}}{\sin \theta \cos \theta} \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right] \tag{1}\\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2=\text { R.H.S } \tag{1}
\end{align*}
$$

OR

L.H.S. : $\sqrt{\frac{\sec \theta-1}{\sec \theta+1}}+\sqrt{\frac{\sec \theta+1}{\sec \theta-1}}$
$=\sqrt{\frac{(\sec \theta-1)}{(\sec \theta+1)} \times \frac{(\sec \theta-1)}{(\sec \theta-1)}}+\sqrt{\frac{(\sec \theta+1)}{(\sec \theta-1)} \times \frac{(\sec \theta+1)}{(\sec \theta+1)}}$
$=\sqrt{\frac{(\sec \theta-1)^{2}}{\tan ^{2} \theta}}+\sqrt{\frac{(\sec \theta+1)^{2}}{\tan ^{2} \theta}} \quad\left[\because \sec ^{2} \theta+\tan ^{2} \theta=1\right]$
$=\frac{(\sec \theta-1)}{\tan \theta}+\frac{(\sec \theta+1)}{\tan \theta}$
$=\frac{\sec \theta-1+\sec \theta+1}{\tan \theta}=\frac{2 \sec \theta}{\tan \theta}=\frac{2 \times \cos \theta}{\sin \theta \times \cos \theta}$
$=2=2 \operatorname{cosec} \theta=$ R.H.S
17. Let the point P divide the line segment $A B$ into $m: n$

Using section formula
$\therefore-4=\frac{3 \times \mathrm{m}+(-6) \times \mathrm{n}}{\mathrm{m}+\mathrm{n}}$

$\Rightarrow-4(\mathrm{~m}+\mathrm{n})=3 \mathrm{~m}-6 \mathrm{n}$
$\Rightarrow-4 \mathrm{~m}-4 \mathrm{n}=3 \mathrm{~m}-6 \mathrm{n}$
$\Rightarrow-4 \mathrm{~m}-3 \mathrm{~m}=-6 \mathrm{n}+4 \mathrm{n}$
$\Rightarrow-7 \mathrm{~m}=-2 \mathrm{n}$
$\Rightarrow \frac{\mathrm{m}}{\mathrm{n}}=\frac{2}{7}$
$\mathrm{m}: \mathrm{n}=2: 7$

Using section formula,

$$
y=\frac{2 \times-8+7 \times 10}{2+7}
$$

$=\frac{-16+70}{9}=\frac{54}{9}=6$

OR

Given three points :
$x_{1} y_{1}, x_{2} y_{2}$ and $x_{3} y_{3}$
$(-5,1),(1, p)$ and $(4,-2)$
Three points are collinear if area of triangle $=0$
$\Rightarrow \frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]=0$
$-5(\mathrm{p}+2)+1(-2-1)+4(1-\mathrm{p})=0$
$\Rightarrow-5 \mathrm{p}-10-3+4-4 \mathrm{p}=0$
$\Rightarrow-9 \mathrm{p}-9=0$
$\Rightarrow-9 \mathrm{p}=9 \Rightarrow \mathrm{p}=-\frac{9}{9}=-1$
18. In $\triangle \mathrm{ABC}$,

By pythagoras theorem,
$(A B)^{2}=(A B)^{2}+(B C)^{2}$

$$
\begin{align*}
& \mathrm{AC}=\sqrt{(8)^{2}+(6)^{2}}=\sqrt{64+36} \\
&=\sqrt{100}=10 \mathrm{~cm} \tag{1}\\
& \therefore \operatorname{Ar}(\triangle \mathrm{ABC})=\mathrm{Ar}(\triangle \mathrm{AOB})+\operatorname{Ar}(\triangle \mathrm{BOC})+\operatorname{Ar}(\triangle \mathrm{COA}) \\
& \Rightarrow \frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{r}+\frac{1}{2} \times \mathrm{BC} \times \mathrm{r}+\frac{1}{2} \times \mathrm{AC} \times \mathrm{r} \\
& \Rightarrow \frac{1}{2} \times 8 \times 6=\frac{1}{2} \times 8 \times \mathrm{r}+\frac{1}{2} \times 6 \times \mathrm{r}+\frac{1}{2} \times 10 \times \mathrm{r} \\
& \Rightarrow 48=8 \mathrm{r}+6 \mathrm{r}+10 \mathrm{r}
\end{align*}
$$

$\Rightarrow 48=24 \mathrm{r} \Rightarrow \mathrm{r}=\frac{48}{24}=2$
radius of circle $=2 \mathrm{~cm}$
\therefore diameter of circle $=2 \mathrm{r}=2 \times 2=4 \mathrm{~cm}$
19. Given: $\triangle \mathrm{ABC}$, right angled at A .
$B L$ and CM are medians.
To prove: $4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
proof $\operatorname{In} \Delta \mathrm{ABL}$,
By Pythagoras theorem, $(\mathrm{BL})^{2}=(\mathrm{AB})^{2}+(\mathrm{AL})^{2}$
$\Rightarrow \mathrm{BL}^{2}=\mathrm{AB}^{2}+\left(\frac{\mathrm{AC}}{2}\right)^{2} \quad(\because \mathrm{BL}$ is median $)$

$\Rightarrow \mathrm{BL}^{2}=\mathrm{AB}^{2}+\frac{\mathrm{AC}^{2}}{4}$
In $\triangle \mathrm{ACM}$,
By Pythagoras theorem.
$\mathrm{CM}^{2}=\mathrm{AC}^{2}+\mathrm{AM}^{2}$
$\Rightarrow \mathrm{CM}^{2}=\mathrm{AC}^{2}+\left(\frac{\mathrm{AB}}{2}\right)^{2} \quad(\because \mathrm{CM}$ is median $)$
$\Rightarrow \mathrm{CM}^{2}=\mathrm{AC}^{2}+\frac{\mathrm{AB}^{2}}{4}$
[1]

Adding equation (i) and (ii), we get
$\mathrm{BL}^{2}+\mathrm{CM}^{2}=\mathrm{AB}^{2}+\frac{\mathrm{AC}^{2}}{4}+\mathrm{AC}^{2}+\frac{\mathrm{AB}^{2}}{4}$
$\Rightarrow \mathrm{BL}^{2}+\mathrm{CM}^{2}=\frac{5 \mathrm{AB}^{2}}{4}+\frac{5 \mathrm{AC}^{2}}{4}$
$\Rightarrow 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5\left(\mathrm{AB}^{2}+\mathrm{AC}^{2}\right)$
$\Rightarrow 4\left(\mathrm{BL}^{2}+\mathrm{CM}^{2}\right)=5 \mathrm{BC}^{2}$
$\left[\operatorname{In} \Delta \mathrm{ABC}\right.$, by pythagoras theorem $\left.\mathrm{BC}^{2}=\mathrm{AB}^{2}+\mathrm{AC}^{2}\right]$
OR
\Rightarrow Given: Rhombus ABCD with diagonals $\mathrm{AC} \& \mathrm{BD}$ intersecting at $=\mathrm{O}$.

To prove: Sum of the square of all sides $=$ sum of the square of it's diagonals.
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$

Proof: Since, side of a rhombus are equal
$\therefore \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
We know that, diagonals of a rhombus bisect each other at a right angles.
Therefore,
$\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COD}=\angle \mathrm{DOA}=90^{\circ}$
Also $\mathrm{AO}=\mathrm{CO}=\frac{1}{2} \mathrm{AC}$
and $\mathrm{BO}=\mathrm{DO}=\frac{1}{2} \mathrm{BD}$
[1]
Now, $A O B$ is a right angle triangle
By, Pythagoras theorem.
$(\mathrm{AB})^{2}=(\mathrm{OA})^{2}+(\mathrm{OB})^{2}$
$(\mathrm{AB})^{2}=\left(\frac{1}{2} \mathrm{AC}\right)^{2}+\left(\frac{1}{2} \mathrm{BD}\right)^{2} \quad[$ from equation (i) \& (ii)]
$\mathrm{AB}^{2}=\frac{\mathrm{AC}^{2}}{4}+\frac{\mathrm{BD}^{2}}{4}$
$4 \mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{AB}^{2}+\mathrm{AB}^{2}+\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
$\Rightarrow \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{BD}^{2}$
(Since sides of a rhombus are equal)
20. We have,

Area of shaded region $=$
Area of the circular region - Area of region ABCD.

Now, are of circular region

$$
\begin{align*}
& =\pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right)=\left[\frac{22}{7}\left(42^{2}-21^{2}\right)\right] \tag{1}\\
& =\left[\frac{22}{7}(1764-441)\right]=\left[\frac{22}{7} \times 1323\right]=4158 \mathrm{~cm}^{2}
\end{align*}
$$

and Area of the region $\mathrm{ABCD}=$ Area of sector $\mathrm{OABO}-$ Area of sector ODCO

$$
\begin{equation*}
=\frac{\theta}{360} \times \pi \mathrm{R}^{2}-\frac{\theta}{360} \times \pi \mathrm{r}^{2}=\frac{\theta}{360} \times \pi\left(\mathrm{R}^{2}-\mathrm{r}^{2}\right) \tag{1}
\end{equation*}
$$

$=\frac{60}{360} \times \frac{22}{7} \times 1323=\frac{22}{6 \times 7} \times 1323=693 \mathrm{~cm}^{2}$
\therefore Required shaded are $=(4158-693) \mathrm{cm}^{2}=3465 \mathrm{~cm}^{2}$
21. Given, Height of Cone (h) $=24 \mathrm{~cm}$

Radius of Cone (r) $=6 \mathrm{~cm}$
Volume of Cone $=\frac{1}{3} \pi \mathrm{r}^{2} \mathrm{~h}=\frac{1}{3} \times \pi \times(6)^{2} \times 24$

$$
\begin{equation*}
=\frac{1}{3} \times \pi \times 36 \times 24=288 \pi \mathrm{~cm}^{2} \tag{1}
\end{equation*}
$$

Let the radius of sphere be Rcm
According to the question,
Volume of sphere $=$ Volume of Cone
$\frac{4}{3} \pi \mathrm{R}^{3}=288 \pi$
$\Rightarrow \frac{4}{3} \mathrm{R}^{3}=288$
$\Rightarrow \mathrm{R}^{3}=\frac{288 \times 3}{4}=216$
$\Rightarrow \mathrm{R}=\sqrt[3]{216}=6 \mathrm{~cm}$
Hence, radius of sphere $=6 \mathrm{~cm}$.
\because Surface area of sphere $=4 \pi r^{2}$
$=4 \times \pi \times(6)^{2}$
$=144 \pi \mathrm{sq} . \mathrm{cm}$
Hence, radius of sphere $=6 \mathrm{~cm}$
and surface area of sphere $=144 \pi \mathrm{~cm}^{2}$
OR
Given, Radius of tank $\mathrm{R}=\frac{10}{2}=5 \mathrm{~m}$
Height of tank $(\mathrm{H})=2 \mathrm{~m}$
Radius of pipe $(\mathrm{r})=\frac{20}{2}=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Speed of water $(\mathrm{h})=3 \mathrm{~km} / \mathrm{h}=3000 \mathrm{~m} / \mathrm{h}$
Volume of cylindrical tank $=\pi \mathrm{R}^{2} \mathrm{H}$

$$
\begin{equation*}
=\pi \times 5 \times 5 \times 2=50 \pi \mathrm{~m}^{3} \tag{1}
\end{equation*}
$$

\therefore Volume of water in 1 hour through pipe $=\pi r^{2} h$

$$
\begin{equation*}
=\pi \times 0.1 \times 0.1 \times 3000=30 \pi \mathrm{~m}^{3} \tag{1}
\end{equation*}
$$

Time taken to fill the tank $=\frac{\text { Volume of } \tan \mathrm{k}}{\text { Volume of water in } 1 \text { hour }}$

$$
\begin{equation*}
=\frac{50 \pi}{30 \pi}=\frac{5}{3} \text { hour }=1 \mathrm{hr} 40 \text { minutes } \tag{1}
\end{equation*}
$$

22. Here, the maximum frequency is 20 and the Corresponding class is $20-25$, So, modal class is $20-25$

We have, Lower class boundary of modal group $(\mathrm{l})=20$
group width (h) $=25-20=5$
Frequency of the modal group $\left(\mathrm{f}_{1}\right)=20$
Frequency of the group before the modal group $\left(f_{0}\right)=7$
Frequency of the group after the modal group $\left(f_{2}\right)=8$
Mode $=1+\frac{\mathrm{f}_{1}-\mathrm{f}_{2}}{2 \mathrm{f}_{1}-\mathrm{f}_{0}-\mathrm{f}_{2}} \times \mathrm{h}=20+\frac{20-8}{2 \times 20-7-8} \times 5$
$=20+\frac{12}{40-15} \times 5=20+\frac{12}{25} \times 5=20+2.4=22.4$
SECTION-D
23. $\frac{1}{2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}}=\frac{1}{2 \mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{2 \mathrm{x}}$
$\Rightarrow \frac{1}{2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}}-\frac{1}{2 \mathrm{x}}=\frac{1}{2 \mathrm{a}}+\frac{1}{\mathrm{~b}}$

$$
\begin{equation*}
\frac{2 x-(2 a+b+2 x)}{(2 a+b+2 x) 2 x}=\frac{b+2 a}{(2 a) b} \tag{1/2}
\end{equation*}
$$

$\Rightarrow \frac{2 \mathrm{x}-2 \mathrm{a}-\mathrm{b}-2 \mathrm{x}}{(2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}) 2 \mathrm{x}}=\frac{\mathrm{b}+2 \mathrm{a}}{2 \mathrm{ab}}$
$\Rightarrow \frac{-(b+2 a)}{(2 a+b+2 x) 2 x}=\frac{(b+2 a)}{2 a b}$
$\Rightarrow-\mathrm{ab}=(2 \mathrm{a}+\mathrm{b}+2 \mathrm{x}) \mathrm{x}$
$\Rightarrow-\mathrm{ab}=2 \mathrm{ax}+\mathrm{bx}+2 \mathrm{x}^{2}$
$\Rightarrow 2 \mathrm{x}^{2}+2 \mathrm{ax}+\mathrm{bx}+\mathrm{ab}=0$
$\Rightarrow 2 \mathrm{x}(\mathrm{x}+\mathrm{a})+\mathrm{b}(\mathrm{x}+\mathrm{a}) 0$
$\Rightarrow(\mathrm{x}+\mathrm{a})(2 \mathrm{x}+\mathrm{b})=0$
$\Rightarrow \mathrm{x}+\mathrm{a}=0$ and $2 \mathrm{x}+\mathrm{b}=0$
or $\quad \mathrm{x}=-\mathrm{a} \quad$ or $\quad \mathrm{x}=\frac{-\mathrm{b}}{2}$
Hence, $x=-a$ and $x=\frac{-b}{2}$
OR
\Rightarrow Let side of first square be x and that of another be y.
In I ${ }^{\text {st }}$ Case,
sum of areas $=640$
$x^{2}+y^{2}=640$
II ${ }^{\text {nd }}$ Case,

Difference of their perimeters $=64$
$4 x-4 y=64$
$\Rightarrow 4(\mathrm{x}-\mathrm{y})=64$
$\Rightarrow \mathrm{x}-\mathrm{y}=\frac{64}{4}=16$
$\Rightarrow \mathrm{x}=16+\mathrm{y}$
putting the value of x in equation (i), we get
$(16+y)^{2}+y^{2}=640$
$256+y^{2}+32 y+y^{2}=640$
$\Rightarrow 2 \mathrm{y}^{2}+32 \mathrm{y}-640+256=0$
$\Rightarrow 2 y^{2}+32 y-384=0$
$\Rightarrow y^{2}+16 y-192=0$
$\Rightarrow y^{2}+24 y-8 y-192=0$
$\Rightarrow y^{2}+24 y-8 y-192=0$
$\Rightarrow y(y+24)-8(y+24)=0$
$\Rightarrow(y+24)(y-8)=0$
$\Rightarrow y+24=0 \Rightarrow y=-24$ (Not Possible)
and $\mathrm{y}-8=0 \Rightarrow \mathrm{y}=8$
putting the value of y in equation. (ii), we get
$\mathrm{x}=16+8=24$
\therefore side of first square $=24 \mathrm{~m}$
and side of second square $=16 \mathrm{~m}$
24. Let a and d be the first term and common difference respectively of the given A.P.
using, $\mathrm{Sn}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\mathrm{Sp}=\mathrm{Sq}$ (given)
$\frac{\mathrm{p}}{2}[2 \mathrm{a}+(\mathrm{p}-1) \mathrm{d}]=\frac{\mathrm{q}}{2}[2 \mathrm{a}+(\mathrm{q}-1) \mathrm{d}]$
$\Rightarrow 2 \mathrm{ap}+\mathrm{p}(\mathrm{p}-1) \mathrm{d}=2 \mathrm{aq}+\mathrm{q}(\mathrm{q}-1) \mathrm{d}$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\{\mathrm{p}(\mathrm{p}-1)-\mathrm{q}(\mathrm{q}-1)\} \mathrm{d}=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\left\{\mathrm{p}^{2}-\mathrm{p}-\mathrm{q}^{2}+\mathrm{q}\right\} \mathrm{d}=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\left\{\left(\mathrm{p}^{2}-\mathrm{q}^{2}\right)-(\mathrm{p}-\mathrm{q})\right\} \mathrm{d}=0$
$\Rightarrow 2 \mathrm{a}(\mathrm{p}-\mathrm{q})+\{(\mathrm{p}+\mathrm{q})(\mathrm{p}-\mathrm{q})-(\mathrm{p}-\mathrm{q}\} \mathrm{d}=0$
$\Rightarrow(\mathrm{p}-\mathrm{q})[2 \mathrm{a}+\{(\mathrm{p}+\mathrm{q})-1\} \mathrm{d}\}=0$
$\Rightarrow 2 \mathrm{a}+(\mathrm{p}+\mathrm{q}-1) \mathrm{d}=0 \quad[\because \mathrm{p} \neq \mathrm{q}]$
Now $S p+q=\frac{p+q}{2}[2 a+(p+q-1) d]$

$$
\begin{aligned}
& =\frac{\mathrm{p}+\mathrm{q}}{2} \times 0 \quad \quad[\text { from equation }(\mathrm{i})] \\
& =0
\end{aligned}
$$

Thus, $\mathrm{Sp}+\mathrm{q}=0 \quad$ Hence proved.
25. Given: $A B C$ is a triangle where
$\angle \mathrm{ABC}<90^{\circ}$ and $\mathrm{AD} \perp \mathrm{BC}$
To prove: $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
Proof: In $\triangle \mathrm{ADB}$, by Pythagoras theorem,

$\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$
[1]
In $\triangle \mathrm{ADC}$, by Pythagoras theorem
$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+(\mathrm{BC}-\mathrm{BD})^{2} \quad[\because \mathrm{DC}=\mathrm{BC}-\mathrm{BD}]$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BC}^{2}+\mathrm{BD}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
$\Rightarrow \mathrm{AC}^{2}=\left(\mathrm{AD}^{2}+\mathrm{BD}^{2}\right)+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD}$
$\Rightarrow \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}-2 \mathrm{BC} \times \mathrm{BD} \quad$ [from eqn. (i)]
26. Let the speed of the boat be ' x ' $m / m i n$.

\therefore Distance covered in 2 minute $=2 \mathrm{x} \mathrm{m}$
Let $B C=' y$ ' m
In $\triangle \mathrm{ABC}$, By Pythagoras theorem,
$\tan 60^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$
$\sqrt{3}=\frac{150}{y}$
$\Rightarrow \mathrm{y}=\frac{150}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=50 \sqrt{3} \mathrm{~m}$
[1]
In $\triangle \mathrm{ABD}$, By Pythagoras theorem.

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
1 & =\frac{150}{y+2 x}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow y+2 x=150 \tag{ii}
\end{equation*}
$$

Substituting the value of y from equation (i) in equation (ii),
we get
$50 \sqrt{3}+2 \mathrm{x}=150$
$\Rightarrow 2 \mathrm{x}=150-50 \sqrt{3}$
$\Rightarrow \mathrm{x}=\frac{50}{2}(3-\sqrt{3})=25(3-\sqrt{3})$
Hence, the speed of boat $=25(3-\sqrt{3}) \mathrm{m} / \mathrm{min}$
OR
Let the width of river be x m and height of other pole be h m .
In $\Delta \mathrm{DCB}$,

By Pythagoras theorem,
$\tan 60^{\circ}=\frac{\mathrm{DC}}{\mathrm{BC}}$
$\sqrt{3}=\frac{60}{x}$
$x=\frac{60}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{60 \sqrt{3}}{3}=20 \sqrt{3} \mathrm{~m}$
$\because \mathrm{DE}=\mathrm{DC}-\mathrm{EC}=(60-\mathrm{h}) \mathrm{m}$
In $\triangle \mathrm{AED}$, By Pythagoras theorem,
$\tan 30^{\circ}=\frac{\mathrm{DE}}{\mathrm{AE}}$
$\frac{1}{\sqrt{3}}=\frac{60-h}{x} \quad(\because A E=B C)$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{60-\mathrm{h}}{20 \sqrt{3}}$
$\Rightarrow 20=60-\mathrm{h} \Rightarrow \mathrm{h}=60-20=40 \mathrm{~m}$
Hence, the width of river be $20 \sqrt{3} \mathrm{~m}$ and height of other pole be 40 m .
27. Stop of construction

1. Draw a line regiment $\mathrm{BC}=6 \mathrm{~cm}$
2. With B as a centre and radius $=A B=5 \mathrm{~cm}$, draw an arc.
3. With C as centre and radius $=\mathrm{AC}=7 \mathrm{~cm}$, draw another arc, intersecting the arc drawn in step 2 at the point A .
4. Join $A B$ and $A C$ to obtain $\triangle A B C$.
5. Below $B C$, mark an acute angle $\angle C B X$.
6. Along $B X$ mark off five points $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ such that $B_{1}=B_{1} B_{2}=B_{2} B_{3}=B_{3} B_{4}=B_{4} B_{5}$
7. Join $B_{5} C$.
8. From B_{3}, draw $B_{3} C^{\prime} \| B_{5} C$.
9. From C , draw $\mathrm{C}^{\prime} \mathrm{A}^{\prime} \| \mathrm{CA}$, meeting BA at the point A^{\prime}

Then $\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$ is the required triangle.
28. LHS : $\sin ^{8} \theta-\cos ^{8} \theta=\left(\sin ^{4} \theta\right)^{2}-\left(\cos ^{4} \theta\right)^{2}$

By using $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})=\left(\sin ^{4} \theta-\cos ^{4} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta\right)$

$$
\begin{align*}
& =\left\{\left(\sin ^{2} \theta\right)^{2}-\left(\cos ^{2} \theta\right)^{2}\right\}\left(\sin ^{4} \theta+\cos ^{4} \theta\right) \\
& =\left(\sin ^{2} \theta-\cos ^{2} \theta\right)\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta\right) \tag{1}
\end{align*}
$$

By using $\sin ^{2} \theta+\cos ^{2} \theta=1$

$$
\begin{align*}
& =\left(1-\cos ^{2} \theta-\cos ^{2} \theta\right) \cdot 1 \cdot\left\{\left(\sin ^{2} \theta\right)^{2}+\left(\cos ^{2} \theta\right)^{2}\right\} \\
& =\left(1-2 \cos ^{2} \theta\right)\left\{\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-2 \sin ^{2} \theta \cdot \cos ^{2} \theta\right\} \tag{1}\\
& \quad\left[\because a^{2}+b^{2}=(a+b)^{2}-2 a b\right]
\end{align*}
$$

$=\left(1-2 \cos ^{2} \theta\right)\left\{(1)^{2}-2 \sin ^{2} \theta \cdot \cos ^{2} \theta\right\}$
$=\left(1-2 \cos ^{2} \theta\right)\left(1-2 \sin ^{2} \theta \cos ^{2} \theta\right)$
$=$ R.H.S
29. In order to find cost of milk which can completely fill container, we need to find volume (in litres)

Volume of container $=$ Volume of frustum $=\frac{1}{3} \pi h\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)$
Here, $\mathrm{h}=$ height $=16 \mathrm{~cm}$,

$$
\begin{aligned}
& r_{1}=\text { radius of upper end }=20 \mathrm{~cm} \\
& r_{2}=\text { radius of lower end }=8 \mathrm{~cm}
\end{aligned}
$$

Now, Volume of container $=\frac{1}{3} \times 3.14 \times 16\left[20^{2}+8^{2}+20 \times 8\right]$

$$
\begin{align*}
& =\frac{3.14 \times 16}{3} \times[400+64+160] \\
& =16.74 \times 624=10445.76 \mathrm{~cm}^{2} \\
& =\frac{10445.76}{1000} \text { litre } \quad\left[\because 1000 \mathrm{~cm}^{2}=1 \text { litre }\right] \tag{1/2}\\
& =10.44576 \text { litre } .
\end{align*}
$$

Now, Cost of 1 litre milk = Rs. 50
\therefore Cost of 10.44576 litre milk $=$ Rs. (50×10.44576)

$$
\begin{equation*}
=\text { Rs. } 522.28=\text { Rs. } 522 \tag{1}
\end{equation*}
$$

Now, we need to find the cost of metal.
To find the cost of metal, we need to find the area of container.
Since container is closed from bottom,
Area of container $=$ Area of frustum + Area of bottom circle $=\pi\left(r_{1}+r_{2}\right) 1+\pi r_{2}^{2}$
Here, $\mathrm{r}_{1}=20 \mathrm{~cm}, \mathrm{r}_{2}=8 \mathrm{~cm}$

$$
\begin{aligned}
l & =\sqrt{h^{2}+\left(r_{1}-r_{2}\right)^{2}} \\
l & =\sqrt{(16)^{2}+(20-8)^{2}}=\sqrt{256+144} \\
& =\sqrt{400}=20 \mathrm{~cm}
\end{aligned}
$$

\therefore Area of container $=3.14(20+8) \times 20+314 \times 8^{2}$

$$
\begin{aligned}
& =3.14[28 \times 20+64]=3.14[560+64] \\
& =3.14 \times 624=1959.36 \mathrm{~cm}^{2}
\end{aligned}
$$

\because Cost of making $100 \mathrm{~cm}^{2}$ metal sheet $=$ Rs. 10
Cost of making $1 \mathrm{~cm}^{2}$ metal sheet $=$ Rs. $\frac{10}{100}$
Cost of making $1959.36 \mathrm{~cm}^{2}$ metal sheet $=$ Rs. $\frac{10}{100} \times 1959.36$

$$
=\text { Rs. } \frac{1959.36}{10}=\text { Rs. } 195.93=\text { Rs. } 196
$$

Hence, Cost of milk = Rs. 522 and cost of metal sheet $=$ Rs. 196

Class	Frequency $\left(\mathrm{f}_{\mathrm{i}}\right)$	x_{i}	$\mathrm{d}_{\mathrm{i}}=\mathrm{xi}-\mathrm{A}$	$\mu_{\mathrm{i}}=\frac{\mathrm{x}_{\mathrm{i}}-\mathrm{A}}{\mathrm{h}}$	$\mathrm{f}_{\mathrm{i}} \mu_{\mathrm{i}}$
$10-30$	5	20	-60	-3	-15
$30-50$	8	40	-40	-2	-16
$50-70$	12	60	-20	-1	-12
$70-90$	20	$\mathrm{~A} \boxed{80}$	0	0	0
$90-110$	3	100	20	1	3
$110-130$	2	120	40	2	4

Mean $=\mathrm{A}+\frac{\Sigma \mathrm{f}_{\mathrm{i}} \mu_{\mathrm{i}}}{\Sigma \mathrm{f}_{\mathrm{i}}} \times \mathrm{h}$
Here, $A=80, \Sigma \mathrm{f}_{\mathrm{i}} \mu_{\mathrm{i}}=-36, \Sigma \mathrm{f}_{\mathrm{i}}=50$ and $\mathrm{h}=30-10=20$
\therefore Mean $=80+\frac{(-36)}{50} \times 5=80+\frac{(-36)}{10}=80-3.6=76.4$
OR
\Rightarrow

Production yield (in kg/ha)	Number of farms $\left(\mathrm{f}_{\mathrm{i}}\right)$
$40-45$	4
$45-50$	6
$50-55$	16
$55-60$	20
$60-65$	30
$65-70$	24

$$
\begin{equation*}
\Sigma \mathrm{f}_{\mathrm{i}}=100 \tag{1}
\end{equation*}
$$

Production yield (X -axis)	Number of farms (y-axis)
More than 40	100
More than 45	$100-4=96$
More than 50	$90-6=90$
More than 55	$90-16=74$
More than 60	$74-20=54$
More than 65	$54-30=24$

