Solution

Section A

1. Given differential equation.
$x^{2} \frac{d^{2} y}{d x^{2}}=\left\{1+\left(\frac{d y}{d x}\right)^{2}\right\}^{4}$
\therefore Order of differential equation $=$ Order of the highest derivative

$$
\begin{equation*}
=2 \tag{1/2}
\end{equation*}
$$

and degree of differential equation $=$ Power of $\frac{d^{2} y}{d x^{2}}$

$$
\begin{equation*}
=1 \tag{1/2}
\end{equation*}
$$

2. Given $\mathrm{f}(\mathrm{x})=\mathrm{x}+7$ and $\mathrm{g}(\mathrm{x})=\mathrm{x}-7$

We know that
fog $(x)=f(g(x))$
$=\mathrm{f}(\mathrm{x}-7)$
$=x-7+7$
$=\mathrm{x}$
Therefore, $\frac{d}{d x}(f o g)(x)=\frac{d}{d x}(x)=1$
Given : $2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$
3. $\because 2\left[\begin{array}{ll}1 & 3 \\ 0 & \mathrm{x}\end{array}\right]+\left[\begin{array}{ll}\mathrm{y} & 0 \\ 1 & 2\end{array}\right]=\left[\begin{array}{ll}5 & 6 \\ 1 & 8\end{array}\right]$

$$
\begin{align*}
& \Rightarrow\left[\begin{array}{cc}
2 \times 1 & 2 \times 3 \\
2 \times 0 & 2 \times x
\end{array}\right]+\left[\begin{array}{ll}
y & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
2 & 6 \\
0 & 2 \mathrm{x}
\end{array}\right]+\left[\begin{array}{ll}
\mathrm{y} & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
2+y & 6+0 \\
0+1 & 2 \mathrm{x}+2
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
(2+y) & 6 \\
1 & (2 \mathrm{x}+2)
\end{array}\right]=\left[\begin{array}{ll}
5 & 6 \\
1 & 8
\end{array}\right] \tag{1/2}
\end{align*}
$$

On comparing both the matrices,

$$
\Rightarrow \quad 2+y=5 \therefore y=5-2=3
$$

and $2 x+2=8 \Rightarrow 2 x=6 \therefore x=\frac{6}{2}=3$
Hence, $x-y=3-3=0$
4. Suppose $\alpha=90^{\circ}, \beta=135^{\circ}$ and $\gamma=45^{\circ}$

$\therefore l=\cos \alpha=\cos 90^{\circ}=0$
$\mathrm{m}=\cos \beta=\cos 135^{\circ}=-\frac{1}{\sqrt{2}} \quad$ and $\quad \mathrm{n}=\cos \gamma=\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
Hence, required direction cosines of the line are $0,-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$.
OR
We know that the vector equation of line passing through $\mathrm{A}(\overrightarrow{\mathrm{a}})$ and parallel to the vector $(\overrightarrow{\mathrm{b}})$ is given by $\vec{r}=\vec{a}+\lambda \vec{b}$ where λ is a scalar (parameter)

Given $\overrightarrow{\mathrm{a}}=3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$
Hence, the equation of the line is
$\vec{r}=(3 \hat{i}+4 \hat{\mathbf{j}}+5 \hat{k})+\lambda(2 \hat{i}+2 \hat{\mathbf{j}}-3 \hat{\mathbf{k}})$

Section B

5. Here $\mathrm{a}, \mathrm{b} \in \mathrm{R}$
$\therefore(\mathrm{ab}+1) \in \mathrm{R}$
So, * is a binary operation on R
[If for $\forall \mathrm{a}, \mathrm{b} \in \mathrm{A}$ and $\mathrm{a}{ }^{*} \mathrm{~b} \in \mathrm{~A}$, then ${ }^{*}$ is a binary operation]
For Associative Property:
Suppose a, b, c \in R, then
we have to prove,
$a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
L.H.S $=a^{*}\left(b^{*} c\right)=a^{*}(b c+1)$
$=[a(b c+1)]+1$
$=a b c+a+1$
Again, R.H.S. $=\left(a^{*} b\right)^{*} c=(a b+1)^{*} c$
$=[(\mathrm{ab}+1) \mathrm{c}]+1$
$=a b c+c+1$
\therefore L.H.S \neq R.H.S
Hence, * binary operation is not associative.
6. Given, $\mathrm{A}=\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]$
$\therefore \mathrm{A}^{2}=\mathrm{A} . \mathrm{A}$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 3 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
2 & 1 & 8 \\
1 & -1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
(2 \times 2+0 \times 2+1 \times 1) & (2 \times 0+0 \times 1-1 \times 1) & (2 \times 1+0 \times 3+1 \times 0) \\
(2 \times 2+1 \times 2+3 \times 1) & (2 \times 0+1 \times 1-1 \times 3) & (2 \times 1+1 \times 3+3 \times 0) \\
(1 \times 2+2 \times(-1)+0 \times 1) & (1 \times 0-1 \times 1-0 \times 1) & (1 \times 1-1 \times 3+0 \times 0)
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{ccc}
5 & -1 & 2 \tag{1}\\
9 & -2 & 5 \\
0 & -1 & -2
\end{array}\right]
$$

and $5 \mathrm{~A}=5\left[\begin{array}{ccc}2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0\end{array}\right]=\left[\begin{array}{ccc}10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0\end{array}\right]$
Hence, $A^{2}-5 A=\left[\begin{array}{ccc}5 & -1 & 2 \\ 9 & -2 & 5 \\ 0 & -1 & -2\end{array}\right]-\left[\begin{array}{ccc}10 & 0 & 5 \\ 10 & 5 & 15 \\ 5 & -5 & 0\end{array}\right]$

$$
=\left[\begin{array}{ccc}
(5-10) & (-1-0) & (2-5) \tag{1/2}\\
(9-10) & (-2-5) & (5-15) \\
(0-5) & (-1+5) & (-2-0)
\end{array}\right]=\left[\begin{array}{ccc}
-5 & -1 & -3 \\
-1 & -7 & -10 \\
-5 & 4 & -2
\end{array}\right]
$$

7. Suppose $\mathrm{I}=\int \sqrt{1-\sin 2 \mathrm{x}} \mathrm{dx}, \frac{\pi}{4}<\mathrm{x}<\frac{\pi}{2}$

$$
\begin{align*}
& =\int \sqrt{\cos ^{2} x+\sin ^{2} x-2 \sin x \cos x} d x \tag{1/2}\\
& \quad \quad[\because \sin 2 x=2 \sin x \cos x] \\
& =\int \sqrt{(\cos x-\sin x)^{2}} d x \\
& =\int|\cos x-\sin x| d x \\
& \therefore \text { for } x \in\left(\frac{\pi}{4}, \frac{\pi}{2}\right) \sin x>\cos x \\
& \therefore|\cos x-\sin x|=\sin x-\cos x \tag{1/2}
\end{align*}
$$

Hence, $I=\int(\sin x-\cos x) d x$
$=-\cos \mathrm{x}-\sin \mathrm{x}+\mathrm{C}$
where C is the constant of integration.
OR
Suppose $I=\int \sin ^{-1}(2 x) d x$
Let $2 \mathrm{x}=\mathrm{t}$
$\Rightarrow 2 \mathrm{dx}=\mathrm{dt} \quad \therefore \mathrm{I}=\frac{1}{2} \int 1 \cdot \sin ^{-1}(\mathrm{t}) \mathrm{dt}$
On integrating by parts.

$$
\begin{align*}
& =\frac{1}{2}\left[\left(\sin ^{-1} \mathrm{t}\right) \mathrm{t}-\int \frac{\mathrm{tdt}}{\sqrt{1-\mathrm{t}^{2}}}\right] \tag{1}\\
& =\frac{1}{2}\left[\mathrm{tsin}^{-1} \mathrm{t}-\frac{1}{2} \int \frac{2 \mathrm{tdt}}{\sqrt{1-\mathrm{t}^{2}}}\right] \\
& =\frac{1}{2}\left[\mathrm{tsin}^{-1} \mathrm{t}+\frac{1}{2} \int \frac{-2 \mathrm{t}}{\sqrt{1-\mathrm{t}^{2}}} \mathrm{dt}\right] \\
& =\frac{1}{2}\left[\mathrm{tsin}^{-1} \mathrm{t}+\frac{1}{2} \times \frac{\left(1-\mathrm{t}^{2}\right)^{\frac{-1}{2}}+1}{\frac{1}{2}}\right]+\mathrm{C} \\
& =\frac{1}{2}\left[\mathrm{tsin}^{-1} \mathrm{t}+\sqrt{1-\mathrm{t}^{2}}\right]+\mathrm{C} \\
& =\frac{1}{2} \times 2 \mathrm{x} \sin ^{-1}(2 \mathrm{x})+\frac{1}{2} \sqrt{1-4 \mathrm{x}^{2}}+\mathrm{C} \\
& =\mathrm{x} \sin ^{-1}(2 \mathrm{x})+\frac{1}{2} \sqrt{1-4 \mathrm{x}^{2}}+\mathrm{C} \tag{1}
\end{align*}
$$

where C is the constant of integration.
8. Given, $\mathrm{y}=\mathrm{e}^{2 \mathrm{x}}(\mathrm{a}+\mathrm{bx})$
$\Rightarrow y=\frac{(a+b x)}{e^{-2 x}} \Rightarrow e^{-2 x} y=a+b x$
On differentiating equation (i) with respect to x,
$e^{-2 x} \times \frac{d y}{d x}+y \times e^{-2 x} \times(-2)=b$
$\Rightarrow \mathrm{e}^{-2 \mathrm{x}}\left(\frac{\mathrm{dy}}{\mathrm{dx}}-2 \mathrm{y}\right)=\mathrm{b}$
Again, on differentiating equation (ii) with respect to x ,
$e^{-2 x}\left(\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}\right)+\left(\frac{d y}{d x}-2 y\right) \times e^{-2 x} \times(-2)=0$
$\Rightarrow e^{-2 x}\left(\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y\right)=0$
$\therefore \frac{\mathrm{d}^{2} y}{\mathrm{dx}^{2}}-4 \frac{\mathrm{dy}}{\mathrm{dx}}+4 \mathrm{y}=0$
9. Suppose, the probability of success in single attempt is p .
\therefore probability of getting an odd number $=\mathrm{p}$
$\Rightarrow \mathrm{p}=\frac{3}{6}=\frac{1}{2}$
and probability of unsuccessful attempt is
$\mathrm{q}=1-\mathrm{p}=1-\frac{1}{2}=\frac{1}{2}$
(i) Probability of getting 5 success

$$
\begin{align*}
& ={ }^{6} \mathrm{C}_{5} \times(\mathrm{p})^{5} \times(\mathrm{q})^{1} \\
& =6 \times\left(\frac{1}{2}\right)^{5} \times\left(\frac{1}{2}\right)^{1} \\
& =6 \times \frac{1}{2^{6}}=\frac{6}{2^{6}} \\
& =\frac{6}{64}=\frac{3}{32} \tag{1}
\end{align*}
$$

(ii) Probability of getting atmost 5 success
$=1-$ Probability of getting 6 success

$$
\begin{aligned}
& =1-{ }^{6} \mathrm{c}_{6} \times(\mathrm{P})^{6} \\
& =1-1 \times\left(\frac{1}{2}\right)^{6}
\end{aligned}
$$

$$
\begin{equation*}
=1-\frac{1}{2^{6}}=1-\frac{1}{64}=\frac{63}{64} \tag{1}
\end{equation*}
$$

OR
Given, $P(X=x)=\left\{\begin{array}{cc}k, & \text { if } x=0 \\ 2 k, & \text { if } x=1 \\ 3 k, & \text { if } x=2 \\ 0, & \text { otherwise }\end{array}\right.$
we know that $\sum \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right)=1$
$\therefore \mathrm{k}+2 \mathrm{k}+3 \mathrm{k}=1$
$\Rightarrow 6 \mathrm{k}=1$
$\therefore \mathrm{k}=\frac{1}{6}$
10. Given, $\mathrm{A}=$ "Number is ever"
$\Rightarrow A=\{2,4,6\}$ and $B=$ "Number is marked red"
$\Rightarrow B=\{1,2,3\}$
$\therefore \mathrm{A} \cap \mathrm{B}=$ Numbers which is even as well as marked red

$$
=\{2,4,6\} \cap\{1,2,3\}=\{2\}
$$

So, Probability of occurrence of event A,
$P(A)=\frac{3}{6}=\frac{1}{2}$
and probability of occurrence of event B,
$\mathrm{P}(\mathrm{B})=\frac{3}{6}=\frac{1}{2}$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{1}{6}$
$\therefore \mathrm{P}(\mathrm{A} \cap \mathrm{B}) \neq \mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B})$
Hence, events A and B are not independent.
11. Let two unit vectors are \hat{a} and \hat{b}, then According to the equation
$\hat{a}+\hat{b}=\hat{r} \quad[\hat{r} \rightarrow$ unit vector $]$

$$
\begin{equation*}
\Rightarrow|\hat{a}+\hat{b}|=|\hat{r}| \tag{1/2}
\end{equation*}
$$

On squaring both sides,

$$
\begin{align*}
& \Rightarrow(\hat{a}+\hat{b}) \cdot(\hat{a}+\hat{b})=\hat{\mathrm{r}} \cdot \hat{\mathrm{r}} \\
& \Rightarrow 2 \hat{\mathrm{a}} \cdot \hat{\mathrm{a}}+\hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}+\hat{\mathrm{b}} \cdot \hat{\mathrm{a}}+\hat{\mathrm{b}} \cdot \hat{\mathrm{~b}}=\hat{\mathrm{r}} \cdot \hat{\mathrm{r}} \\
& \Rightarrow 1+\hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}+\hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}+1=1 \quad[\because \hat{\mathrm{n}} \cdot \hat{\mathrm{n}}=1 \text { and } \hat{a} \cdot \hat{\mathrm{~b}}=\hat{\mathrm{b}} \cdot \hat{\mathrm{a}}] \\
& \Rightarrow 2 \hat{\mathrm{a}} \cdot \hat{\mathrm{~b}}=1-2=-1 \tag{1/2}\\
& \therefore \hat{a} \cdot \hat{\mathrm{~b}}=-\frac{1}{2} \quad \ldots(\mathrm{i}) \tag{i}
\end{align*}
$$

Magnitude of their difference $=|\hat{a}-\hat{b}|$
Let $|\hat{a}-\hat{b}|=t$
On squaring both sides,

$$
\begin{align*}
t^{2}=|\hat{a}-\hat{b}|^{2} \Rightarrow t^{2} & =(\hat{a}-\hat{b}) \cdot(\hat{a}-\hat{b}) \quad\left[\because|\vec{a}|^{2}=(\vec{a}) \cdot(\vec{a})\right] \\
& =\hat{a} \cdot \hat{a}-\hat{a} \cdot \hat{b}-\hat{b} \cdot \hat{a}+\hat{b} \cdot \hat{b} \\
& =1-2 \hat{a} \cdot \hat{b}+1 \quad[\because \hat{a} \cdot \hat{a}=1] \tag{1/2}\\
& =2-2 \hat{a} \cdot \hat{b} \\
& =2-2\left(-\frac{1}{2}\right) \quad[\text { using equation }(i)] \\
& =2+1=3 \\
& \therefore t=\sqrt{3} \\
& \text { or }|\hat{a}-\hat{b}|=\sqrt{3} \tag{1/2}
\end{align*}
$$

Hence proved.

Given, $\quad \vec{a}=2 \hat{i}+3 \hat{j}+\hat{k}$

$$
\overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}
$$

and $\quad \vec{c}=-3 \hat{i}+\hat{j}+2 \hat{k}$
$\therefore[\vec{a} \vec{b} \vec{c}]=\vec{a} .(\vec{b} \times \vec{c})=\left|\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$

$$
=\left|\begin{array}{ccc}
2 & 3 & 1 \tag{1}\\
1 & -2 & 1 \\
-3 & 1 & 2
\end{array}\right|
$$

$=2(-4-1)-3(2+3)+1(1-6)$
$=2 \times(-5)-3 \times(5)+1 \times(-5)$
$=-10-15-5$
$=-30$
12. Let $I=\int \frac{\tan ^{2} x \cdot \sec ^{2} x}{1-\tan ^{6} x} d x$

Let $\tan ^{3} \mathrm{x}=\mathrm{t}$
$\Rightarrow 3 \tan ^{2} \mathrm{x} \sec ^{2} \mathrm{xdx}=\mathrm{dt}$
$\therefore \mathrm{I}=\int \frac{1}{3} \times \frac{\mathrm{dt}}{1-\mathrm{t}^{2}}$
$=\frac{1}{3} \int \frac{\mathrm{dt}}{1-\mathrm{t}^{2}}$
$=\frac{1}{3} \times \frac{1}{2} \log \left|\frac{1+\mathrm{t}}{1-\mathrm{t}}\right|+\mathrm{C}$
Hence, $\mathrm{I}=\frac{1}{6} \log \left|\frac{1+\tan ^{3} \mathrm{x}}{1-\tan ^{3} \mathrm{x}}\right|+\mathrm{C}$
where C is constant of integration.

Section C

13. According to the question,

$$
\begin{align*}
& \tan ^{-1}(2 \mathrm{x})+\tan ^{-1}(3 \mathrm{x})=\frac{\pi}{4} \\
& \Rightarrow \tan ^{-1}(2 \mathrm{x})=\frac{\pi}{4}-\tan ^{-1}(3 \mathrm{x}) \tag{1}\\
& \Rightarrow \tan \left(\tan ^{-1}(2 \mathrm{x})\right)=\tan \left(\frac{\pi}{4}-\tan ^{-1}(3 \mathrm{x})\right)
\end{align*}
$$

$$
\begin{align*}
& \Rightarrow 2 x=\frac{\tan \frac{\pi}{4}-\tan \left(\tan ^{-1}(3 x)\right)}{1+\tan \frac{\pi}{4} \times \tan \left(\tan ^{-1}(3 x)\right)} \tag{1}\\
& \Rightarrow 2 x=\frac{1-3 x}{1+3 x} \Rightarrow 2 x+6 x^{2}=1-3 x \\
& \Rightarrow 6 x^{2}+5 x-1=0 \\
& \Rightarrow 6 x^{2}+6 x-x-1=0 \\
& \Rightarrow 6 x(x+1)-1(x+1)=0 \\
& \Rightarrow(x+1)(6 x-1)=0
\end{align*}
$$

If $x+1=0 \therefore x=-1$ [Invalid]
and if $6 \mathrm{x}-1=0 \quad \therefore \mathrm{x}=\frac{1}{6}$
Hence, $x=\frac{1}{6}$
14. Given,
$\log \left(x^{2}+y^{2}\right)=2 \tan ^{-1}\left(\frac{y}{x}\right)$
On differentiating with respect to x,

$$
\begin{align*}
\frac{d}{d x}\left[\log \left(x^{2}+y^{2}\right)\right] & =\frac{d}{d x}\left[2 \tan ^{-1}\left(\frac{y}{x}\right)\right] \tag{1}\\
& \Rightarrow \frac{1}{x^{2}+y^{2}} \times \frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{2}{1+\left(\frac{y}{x}\right)^{2}} \times \frac{d}{d x}\left(\frac{y}{x}\right) \\
& \Rightarrow \frac{1}{x^{2}+y^{2}}\left[2 x+2 y \frac{d y}{d x}\right]=\frac{2 x^{2}}{x^{2}+y^{2}}\left[\frac{x \frac{d y}{d x}-y}{x^{2}}\right] \tag{1}\\
& \Rightarrow x+y \frac{d y}{d x}=x \frac{d y}{d x}-y \\
& \Rightarrow(y-x) \frac{d y}{d x}=-y-x \\
& \therefore \frac{d y}{d x}=\frac{-(x+y)}{-(x-y)}=\frac{x+y}{x-y} \tag{2}
\end{align*}
$$

Hence proved.
OR
$\because x^{y}-y^{x}=a^{b}$
On differentiating with respect to x ,

$$
\begin{align*}
& \frac{d}{d x}\left(x^{y}\right)-\frac{d}{d x}\left(y^{x}\right)=0 \tag{i}\\
& x^{y}=v(l e t) \quad \Rightarrow \quad \log v=y \log x
\end{align*}
$$

On differentiating with respect to x ,

$$
\begin{align*}
& \frac{1}{v} \frac{d v}{d x}=y \frac{d}{d x}(\log x)+\log x \cdot \frac{d y}{d x} \\
& \Rightarrow \frac{d v}{d x}=v\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right] \\
& \Rightarrow \frac{d}{d x}\left(x^{y}\right)=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right] \tag{1}
\end{align*}
$$

Similarly, let $y^{x}=u$

$$
\Rightarrow \log u=x \cdot \log y
$$

On differentiating with respect to x .

$$
\begin{align*}
& \frac{1}{u} \cdot \frac{d u}{d x}=x \frac{d}{d x}(\log y)+\log y \cdot 1 \\
& \Rightarrow \frac{d u}{d x}=u\left[\frac{x}{y} \frac{d y}{d x}+\log y\right] \\
& \Rightarrow \frac{d}{d x}\left(y^{x}\right)=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right] \tag{iii}
\end{align*}
$$

Now, from equation (i).

$$
\begin{align*}
& x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right]-y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=0 \\
& \Rightarrow \frac{d y}{d x}\left[x^{y} \cdot \log x-y^{x}\left(\frac{x}{y}\right)\right]=y^{x} \cdot \log y-x^{y}\left(\frac{y}{x}\right) \\
& \Rightarrow \frac{d y}{d x}=\frac{y^{x} \cdot \log y-x^{y-1} \cdot y}{x^{y} \cdot \log x-y^{x-1} \cdot x} \tag{2}
\end{align*}
$$

15. Let $I=\int \frac{3 x+5}{x^{2}+3 x-18} d x$

$$
\begin{align*}
& =\int \frac{\frac{3}{2}(2 x+3)-\frac{9}{2}+5}{x^{2}+3 x-18} d x \tag{1}\\
& =\frac{3}{2} \int \frac{2 x+3}{x^{2}+3 x-18} d x+\int \frac{5-\frac{9}{2}}{x^{2}+3 x-18} d x \\
& =\frac{3}{2} \int \frac{2 x+3}{x^{2}+3 x-18} d x+\frac{1}{2} \int \frac{1}{x^{2}+3 x-18} d x \\
& =\frac{3}{2} \int \frac{d}{\frac{d x}{x^{2}+3 x-18}\left(x^{2}+3 x-18\right)} d x+\frac{1}{2} \int \frac{d x}{\left(x+\frac{3}{2}\right)^{2}-18-\frac{9}{4}} \tag{1}
\end{align*}
$$

$$
\begin{align*}
& =\frac{3}{2} \ln \left|x^{2}+3 x-18\right|+\frac{1}{2} \int \frac{d x}{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{9}{2}\right)^{2}} \\
& =\frac{3}{2} \ln \left|x^{2}+3 x-18\right|+\frac{1}{2} \times \frac{1}{2 \times \frac{9}{2}} \log \left|\frac{x+\frac{3}{2}-\frac{9}{2}}{x+\frac{3}{2}+\frac{9}{2}}\right|+c \\
& =\frac{3}{2} \ln \left|x^{2}+3 x-18\right|+\frac{1}{18} \log \left|\frac{x-\frac{6}{2}}{x+\frac{12}{2}}\right|+c \tag{1}\\
& =\frac{3}{2} \ln \left|x^{2}+3 x-18\right|+\frac{1}{18} \log \left|\frac{2 x-6}{2 x+12}\right|+c \\
& =\frac{3}{2} \ln \left|x^{2}+3 x-18\right|+\frac{1}{18} \log \left|\frac{x-3}{x+6}\right|+c \tag{1}
\end{align*}
$$

16. To prove : $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$

$$
\therefore \text { RHS } \int_{0}^{a} f(a-x) d x
$$

Suppose $\mathrm{a}-\mathrm{x}=\mathrm{t} \Rightarrow-\mathrm{dx}=\mathrm{dt}$
when $\mathrm{x}=0$, then $\mathrm{t}=\mathrm{a}$
and when $x=a$, then $t=0$

$$
\begin{array}{ll}
=\int_{0}^{a} f(t)(-d t) \tag{1}\\
=\int_{0}^{a} f(t) d t & {\left[\because \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x\right]} \\
=\int_{0}^{a} f(x) d x & {\left[\because \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(t) d t\right]}
\end{array}
$$

Hence, L.H.S. $=$ R.H.S.
Let

$$
\begin{align*}
& I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x \tag{i}\\
& \int_{0}^{\pi} \frac{(\pi-x) \sin (\pi-x)}{1+\cos ^{2}(\pi-x)} d x \\
& I=\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x . \tag{ii}
\end{align*}
$$

On adding equation (i) and (ii).
we get,

$$
2 I=\int_{0}^{\pi} \frac{x \sin x}{1+\cos ^{2} x} d x+\int_{0}^{\pi} \frac{(\pi-x) \sin x}{1+\cos ^{2} x} d x
$$

$$
\begin{align*}
& 2 I=\int_{0}^{\pi} \frac{\pi \sin x}{1+\cos ^{2} x} d x \tag{1}\\
& \Rightarrow I=\frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos ^{2} x} d x
\end{align*}
$$

Let $\cos x=t \Rightarrow \sin x d x=-d t$
when $x=0$, then $t=\cos 0=1$
and when $\mathrm{x}=\pi$, then $\mathrm{t}=\cos \pi=-1$

$$
\begin{align*}
\therefore & I=\frac{\pi}{2} \int_{1}^{-1} \frac{-d t}{1+t^{2}} \\
I & =\frac{\pi}{2} \int_{-1}^{1} \frac{d t}{1+t^{2}}=\frac{\pi}{2}\left[\tan ^{-1} t\right]_{-1}^{1} \\
& =\frac{\pi}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(-1)\right] \\
& =\frac{\pi}{2}\left[\frac{\pi}{4}+\frac{\pi}{4}\right] \\
& =\frac{\pi}{2} \times \frac{\pi}{2}=\frac{\pi^{2}}{4} \tag{1}
\end{align*}
$$

17. Given, $\overrightarrow{\mathrm{OA}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$
$\overrightarrow{\mathrm{OB}}=2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}$
$\overrightarrow{\mathrm{OC}}=3 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{OD}}=\hat{\mathrm{i}}-6 \hat{\mathrm{j}}-\hat{\mathrm{k}}$
$\therefore \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=(2 \hat{\mathrm{i}}+5 \hat{\mathrm{j}})-(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{k})$

$$
=\mathrm{i}+4 \hat{\mathrm{j}}-\hat{\mathrm{k}}
$$

and $\overrightarrow{\mathrm{CD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OC}}=(\hat{\mathrm{i}}-6 \hat{\mathrm{j}}-\hat{\mathrm{k}})-(3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$

$$
\begin{equation*}
=-2 \hat{i}-8 \hat{j}+2 \hat{k} \tag{1/2}
\end{equation*}
$$

We know that.

$$
\begin{align*}
\cos \theta & =\left|\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{CD}}}{|\overrightarrow{\mathrm{AB}}| \cdot|\overrightarrow{\mathrm{CD}}|}\right| \text { [where } \theta \text { is the required angle] } \tag{1}\\
& =\left\lvert\, \frac{(\hat{\mathrm{i}}+4 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot(-2 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})}{\sqrt{(1)^{2}+(4)^{2}+(1)^{2}} \times \sqrt{(-2)^{2}+(-8)^{2}+(2)^{2}} \mid}\right. \\
& =\left|\frac{-2-32-2}{\sqrt{18} \times \sqrt{72}}\right| \\
& =\left|\frac{-36}{\sqrt{18} \times 2 \sqrt{18}}\right|
\end{align*}
$$

$=\frac{36}{2 \times 18}=\frac{36}{36}=1$
$\Rightarrow \cos \theta=\cos 0$
$\therefore \theta=0$
Therefore, lines $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{CD}}$ are collinear.
18. Given $\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|=2(a+b)(b+c)(c+a)$
\therefore L.H.S $=\left|\begin{array}{ccc}a+b+c & -c & -b \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|$
On Applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$,
$\left|\begin{array}{ccc}(a+b+c-c-b) & (-c+a+b+c-a) & (-b-a+a+a+b+c) \\ -c & a+b+c & -a \\ -b & -a & a+b+c\end{array}\right|$

$$
=\left|\begin{array}{ccc}
a & b & c \\
-c & a+b+c & -a \\
-b & -a & a+b+c
\end{array}\right|
$$

On Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}$ and $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$.

$$
\begin{align*}
& =\left|\begin{array}{ccc}
a & b & c \\
-(a+c) & (a+c) & -(a+c) \\
-(a+b) & -(a+b) & (a+b)
\end{array}\right| \tag{1}\\
& =(a+b)(a+c)\left|\begin{array}{ccc}
a & b & c \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right| \tag{1/2}
\end{align*}
$$

On Applying $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}+\mathrm{R}_{2}$.

$$
\begin{align*}
& =(a+b)(a+c)\left|\begin{array}{ccc}
a & b & c \\
-1 & 1 & -1 \\
-2 & 0 & 0
\end{array}\right| \tag{1}\\
& =(a+b)(a+c)[-2(-b-c)] \\
& =2(a+b)(a+c)(b+c) \tag{1}
\end{align*}
$$

Hence, L.H.S. = R.H.S.
19. Here, $y=\sin t$

On differentiating with respect to t,

$$
\begin{equation*}
\frac{\mathrm{dy}}{\mathrm{dt}}=\cos \mathrm{t} \tag{i}
\end{equation*}
$$

Again, differentiating with respect to t,

$$
\text { Put } \begin{align*}
\frac{d^{2} y}{\mathrm{dt}^{2}} & =-\sin t \\
t & =\frac{\pi}{4} \\
\therefore \frac{d^{2} y}{d t^{2}} & =-\sin \frac{\pi}{4}=-\frac{1}{\sqrt{2}} \tag{1}
\end{align*}
$$

Given,

$$
x=\cos t+\log \left[\tan \left(\frac{t}{2}\right)\right]
$$

On differentiating with respect to t,

$$
\begin{aligned}
\Rightarrow \frac{\mathrm{dx}}{\mathrm{dt}} & =-\sin t+\frac{\frac{1}{2} \sec ^{2}\left(\frac{\mathrm{t}}{2}\right)}{\tan \left(\frac{\mathrm{t}}{2}\right)} \\
& =-\sin t+\frac{1}{\sin t}\left[\because 2 \sin \frac{\mathrm{t}}{2} \cos \frac{\mathrm{t}}{2}=\sin \mathrm{t}\right]
\end{aligned}
$$

From equation (i) and (ii),

$$
\begin{align*}
& \frac{d y}{d t} \div \frac{d x}{d t}=\frac{\cos t}{-\sin t+\frac{1}{\sin t}} \\
& \quad \Rightarrow \frac{d y}{d x}=\frac{\sin t \cdot \cos t}{1-\sin ^{2} t}=\frac{\sin t \cdot \cos t}{\cos ^{2} t}=\frac{\sin t}{\cos t}=\tan t \tag{1}
\end{align*}
$$

On differentiating with respect to x ,

$$
\begin{align*}
\frac{d^{2} y}{d x^{2}} & =\sec ^{2} \cdot \frac{d t}{d x} \\
& =\frac{\sec ^{2} t}{\left(-\sin t+\frac{1}{\sin t}\right)}=\frac{\sec ^{2} t \cdot \sin t}{1-\sin ^{2} t} \\
& =\frac{\sin t}{\cos ^{4} t} \tag{1}
\end{align*}
$$

Put $t=\frac{\pi}{4}$

$$
\begin{align*}
\therefore \frac{d^{2} y}{d x x^{2}} & =\frac{\sin \frac{\pi}{4}}{\cos ^{4}\left(\frac{\pi}{4}\right)}=\frac{\frac{1}{\sqrt{2}}}{\left(\frac{1}{\sqrt{2}}\right)^{4}}=\frac{1}{\left(\frac{1}{\sqrt{2}}\right)^{3}} \\
& =(\sqrt{2})^{3}=2 \sqrt{2} \tag{1}
\end{align*}
$$

20. Here, $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): \mathrm{a} \leq \mathrm{b}\}$

For reflexivity,
As $a \leq a \forall a \in R$
\because ' R ' is reflexive.
For symmetry,
suppose $(a, b) \in R$
$\therefore \mathrm{a} \leq \mathrm{b}$
Here, it is not necessary that $\mathrm{b} \leq \mathrm{a}$
$\therefore(b, a) \in R$ [False]
Therefore, ' R ' is not symmetric.
for transitivity,
Suppose aRb and $b R c$
$\therefore \mathrm{a} \leq \mathrm{b}$ and $\mathrm{b} \leq \mathrm{c} \Rightarrow \mathrm{a} \leq \mathrm{c}$
\therefore aRc
So, $\mathrm{aRb}, \mathrm{bRc} \Rightarrow \mathrm{aRc}$
\therefore ' R ' is transitive.
Hence, ' R ' is reflexive as well as transitive but not symmetric
OR
Given $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$
Let $x_{1}, x_{2} \in N$, then
$\mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
$\Rightarrow \mathrm{x}_{1}^{2}+\mathrm{x}_{1}+1=\mathrm{x}_{2}{ }^{2}+\mathrm{x}_{2}+1 \Rightarrow\left(\mathrm{x}_{1}^{2}-\mathrm{x}_{2}^{2}\right)+\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)=0 \Rightarrow\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left[\mathrm{x}_{1}+\mathrm{x}_{2}+1\right]=0$
$\because \mathrm{x}_{1}+\mathrm{x}_{2}+1 \neq 0$
$\therefore \mathrm{x}_{1}-\mathrm{x}_{2}=0$
$\mathrm{x}_{1}=\mathrm{x}_{2} \Rightarrow \mathrm{f}\left(\mathrm{x}_{1}\right)=\mathrm{f}\left(\mathrm{x}_{2}\right)$
Therefore, ' f ' is one-one and ' f ' is not onto as $\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$ does not attain all natural numbers for $\mathrm{x} \in \mathrm{N}$.

Hence, ' f ' is one-one but not onto.
Now, $f(x)=x^{2}+x+1$
On putting $\mathrm{x}=\mathrm{f}^{-1}(\mathrm{x})$

$$
\begin{align*}
& \therefore \mathrm{x}=\left(\mathrm{f}^{-1}(\mathrm{x})\right)^{2}+\mathrm{f}^{-1}(\mathrm{x})+1 \\
& \Rightarrow\left(\mathrm{f}^{-1}(\mathrm{x})\right)^{2}+\mathrm{f}^{-1}(\mathrm{x})+(1-\mathrm{x})=0 \Rightarrow \mathrm{f}^{-1}(\mathrm{x})= \\
& \qquad \begin{array}{l}
-1 \pm \sqrt{(1)^{2}-4(1-\mathrm{x})} \\
2 \\
\end{array} \tag{2}\\
& =\frac{-1 \pm \sqrt{1-4+4 \mathrm{x}}}{2}=\frac{-1+\sqrt{4 \mathrm{x}-3}}{2}
\end{align*}
$$

Hence, $\mathrm{f}^{-1}(\mathrm{x})=\frac{-1+\sqrt{4 \mathrm{x}-3}}{2} \quad[\because \mathrm{~S}$ contains natural numbers only. $]$
21. According to the question,
equation of curve $y=\sqrt{3 x-2}$
On differentiating with respect to x,
$\frac{d y}{d x}=\frac{1}{2 \sqrt{3 x-2}} \times(3-0)=\frac{3}{2 \sqrt{3 x-2}}$

Now, slope of tangent at point $\left(x_{1}, y_{1}\right)$ is
$\frac{\mathrm{dy}}{\mathrm{dx}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)}=\frac{3}{2 \sqrt{3 \mathrm{x}_{1}-2}}$ and slope of line $4 \mathrm{x}-2 \mathrm{y}+50$ is 2 .

$$
\begin{align*}
& \therefore \frac{3}{2 \sqrt{3 \mathrm{x}_{1}-2}}=2 \tag{1/2}\\
& \Rightarrow 3=4 \sqrt{3 \mathrm{x}_{1}-2}
\end{align*}
$$

On squaring both sides,

$$
\begin{aligned}
& \Rightarrow 9=16\left(3 x_{1}-2\right) \\
& \Rightarrow 3 x_{1}-2=\frac{9}{16} \Rightarrow 3 x_{1}=\frac{9}{16}+2 \\
& \Rightarrow 3 x_{1}=\frac{41}{16} \\
& \therefore x_{1}=\frac{41}{48}
\end{aligned}
$$

\because Point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on the curve

$$
\begin{equation*}
\therefore y_{1}=\sqrt{3 \times \frac{41}{48}-2}=\sqrt{\frac{41-32}{16}}=\sqrt{\frac{9}{16}}=\frac{3}{4} \tag{1}
\end{equation*}
$$

Therefore, equation of tangent,

$$
\begin{aligned}
& \left(y-\frac{3}{4}\right)=2\left(x-\frac{41}{48}\right) \\
& \Rightarrow y-\frac{3}{4}=2 x-\frac{41}{24} \Rightarrow 2 x-y=\frac{41}{24}-\frac{3}{4} \\
& \Rightarrow 2 x-y=\frac{41-18}{24}=\frac{23}{24} \\
& \therefore 48 x-24 y=23
\end{aligned}
$$

Now, equation of normal at the point of contact to the curve $\therefore \mathrm{y}=\sqrt{3 \mathrm{x}-2}$
Suppose, slope of normal $=m$

$$
\begin{align*}
& \therefore \mathrm{m}_{1} \mathrm{~m}_{2}=-1 \Rightarrow \mathrm{~m} \times 2=-1 \\
& \therefore \mathrm{~m}=-\frac{1}{2} \tag{1}
\end{align*}
$$

So, equation of normal at point $\left(\frac{41}{48}, \frac{3}{4}\right)$

$$
\begin{align*}
& \Rightarrow\left(y-\frac{3}{4}\right)=-\frac{1}{2}\left(x-\frac{41}{48}\right) \\
& \Rightarrow 2 y-\frac{3}{2}=-x+\frac{41}{48} \\
& \Rightarrow x+2 y=\frac{41}{48}+\frac{3}{2}=\frac{41+72}{48}=\frac{113}{48} \\
& \Rightarrow x+2 y=\frac{113}{48} \\
& \therefore 48 x+96 y=113 \tag{1}
\end{align*}
$$

22. According to the given differential equation.
$x d y-y d x=\sqrt{x^{2}+y^{2}} d x$
On dividing by dx ,

$$
\begin{aligned}
& \Rightarrow x \frac{d y}{d x}-y=\sqrt{x^{2}+y^{2}} \\
& \Rightarrow x \frac{d y}{d x}=\sqrt{x^{2}+y^{2}}+y \\
& \Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}+y}{x}
\end{aligned}
$$

On putting $y=v x$ and $\frac{d y}{d x}=v+x \frac{d v}{d x}$,
we get, $v+x \frac{d v}{d x}=\frac{\sqrt{x^{2}+v^{2} x^{2}}+v x}{x}$

$$
\begin{align*}
& \Rightarrow \mathrm{v}+\mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{\sqrt{1+\mathrm{v}^{2}}+\mathrm{v}}{1} \\
& \Rightarrow \mathrm{x} \frac{\mathrm{dv}}{\mathrm{dx}}=\sqrt{1+\mathrm{v}^{2}} \\
& \Rightarrow \frac{\mathrm{dv}}{\sqrt{1+\mathrm{v}^{2}}}=\frac{\mathrm{dx}}{\mathrm{x}} \tag{1}
\end{align*}
$$

On integrating both sides,
We get

$$
\begin{aligned}
& \int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x} \\
& \Rightarrow \log \left|v+\sqrt{1+v^{2}}\right|=\log |x|+\log c \\
& \Rightarrow\left|v+\sqrt{1+v^{2}}\right|=|c x| \\
& \Rightarrow\left|\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right|=|c x|
\end{aligned}
$$

On putting $x=1$ and $y=0$
$|0+\sqrt{1+0}|=|c|$
$\therefore \mathrm{c}=1$
Hence, solution of the given differential equation is $y+\sqrt{x^{2}+y^{2}}=x^{2}$.
OR
According to the given differential equation,
$\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}$
$\Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=4 x^{2}-2 x y$
$\Rightarrow \frac{d y}{d x}+\frac{2 x}{\left(1+x^{2}\right)} y=\frac{4 x^{2}}{\left(1+x^{2}\right)}$
\therefore This is a linear differential equation of the form $\frac{d y}{d x}+P y=Q$, where
$\mathrm{P}=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}$ and $\mathrm{Q}=\frac{4 \mathrm{x}^{2}}{1+\mathrm{x}^{2}}$
\therefore I.F. $=\mathrm{e}^{\int \mathrm{Pdx}}=-\mathrm{e}^{\int \frac{2 \mathrm{x}}{1+\mathrm{x}^{2}} \mathrm{dx}}=\mathrm{e}^{\ln \left(1+\mathrm{x}^{2}\right)}-1+\mathrm{x}^{2}$
So, $y\left(1+x^{2}\right)=\int \frac{4 x^{2}}{1+x^{2}}\left(1+x^{2}\right) d x+c$
$\Rightarrow y\left(1+x^{2}\right)=\frac{4 x^{3}}{3}+c$
On putting $x=0$ and $y=0$
$\Rightarrow 0(0)=0+c$
$\therefore \mathrm{c}=0$
Hence, required solution of given differential equation is $y=\frac{4 x^{3}}{3\left(1+x^{2}\right)}$
23. Given $\mathrm{L}_{1}: \frac{1-\mathrm{x}}{3}=\frac{7 \mathrm{y}-14}{\lambda}=\frac{\mathrm{z}-3}{2} \Rightarrow \frac{\mathrm{x}-1}{-3}=\frac{\mathrm{y}-2}{\frac{\lambda}{7}}=\frac{\mathrm{z}-3}{2}=\mathrm{k}_{1}$ (Let)
\therefore Direction ratio's of $\mathrm{L}_{1}=\left\langle-3, \frac{\lambda}{7}, 2\right\rangle$
Similarly,
$L_{2} \frac{7-7 x}{3 \lambda}=\frac{y-5}{1}=\frac{6-z}{5}$
$\Rightarrow \frac{x-1}{-\frac{3 \lambda}{7}}=\frac{y-5}{1}=\frac{z-6}{-5}=k_{2}$ (let)
\because Direction ratio's of $\mathrm{L}_{2}=\left\langle\frac{-3 \lambda}{7}, 1,-5\right\rangle$
\because Lines L_{1} and L_{2} are perpendicular to each other

$$
\begin{align*}
& \therefore(-3)\left(-\frac{3 \lambda}{7}\right)+\frac{\lambda}{7} \times 1+2 \times(-5)=0 \\
& \Rightarrow \frac{9 \lambda}{7}+\frac{\lambda}{7}-10=0 \Rightarrow \frac{10 \lambda}{7}=10 \quad \therefore \lambda=7 \tag{1}
\end{align*}
$$

We know that lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ intersect each other if

$$
\left|\begin{array}{ccc}
\left(x_{1}-x_{2}\right) & \left(y_{1}-y_{2}\right) & \left(z_{1}-z_{2}\right) \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

Now,
$\Delta=\left|\begin{array}{ccc}(1-1) & (5-2) & (6-3) \\ -3 & 1 & 2 \\ -3 & 1 & -5\end{array}\right|=\left|\begin{array}{ccc}0 & 3 & 3 \\ -3 & 1 & 2 \\ -3 & 1 & -5\end{array}\right|$
$=-3(15+6)+3(-3+3)$
$=-3 \times 21+0=-63$ which is not equal to zero. Therefore, lines do not intersect.

Section -D

24. Let the altitude of the cone is h unit, then, According to the question,

Here, Radius of base of the cone

$$
\begin{aligned}
& \mathrm{R}=\sqrt{\mathrm{r}^{2}-(\mathrm{h}-\mathrm{r})^{2}} \\
& =\sqrt{\mathrm{r}^{2}-\mathrm{h}^{2}-\mathrm{r}^{2}+2 \mathrm{hr}} \\
& =\sqrt{2 \mathrm{hr}-\mathrm{h}^{2}}
\end{aligned}
$$

and volume of the cone $\mathrm{V}=\frac{1}{3} \pi \mathrm{R}^{2} \mathrm{~h}$

$$
\begin{aligned}
& =\frac{\pi}{3}\left(2 h r-h^{2}\right) h \\
& =\frac{\pi}{3}\left(2 h^{2} r-h^{3}\right)
\end{aligned}
$$

\because Volume of the cone is maximum,
$\therefore \frac{\mathrm{dv}}{\mathrm{dh}}=0$

$$
\Rightarrow \frac{\pi}{3}\left[4 \mathrm{hr}-3 \mathrm{~h}^{2}\right]=0
$$

$$
\begin{align*}
& \Rightarrow 4 \mathrm{hr}-3 \mathrm{~h}^{2}=0 \\
& \Rightarrow \mathrm{~h}(4 \mathrm{r}-3 \mathrm{~h})=0 \\
& \therefore \mathrm{~h}=0 \text { or } \mathrm{h}=\frac{4 \mathrm{R}}{3} \tag{2}
\end{align*}
$$

\therefore For maximum volume, $\frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dh}^{2}}$ should be negative .

$$
\begin{align*}
& \frac{\mathrm{d}^{2} \mathrm{v}}{\mathrm{dh}^{2}}=\frac{\pi}{3}[4 \mathrm{r}-6 \mathrm{~h}] \\
& \text { Put } \mathrm{h}=\frac{4 \mathrm{r}}{3} \\
& \therefore \frac{\mathrm{~d}^{2} \mathrm{v}}{\mathrm{dh}^{2}}=\frac{\pi}{3}\left[4 \mathrm{r}-6\left(\frac{4 \mathrm{r}}{3}\right)\right]=-\frac{4 \pi \mathrm{r}}{3} \text { (negative) } \tag{2}
\end{align*}
$$

Therefore, for maximum volume, altitude of the cone should be $\frac{4 \mathrm{r}}{3}$.

$$
\begin{align*}
& \therefore \mathrm{v}_{\max }=\frac{\pi}{3}\left[2 \mathrm{~h}^{2} \mathrm{r}-\mathrm{h}^{3}\right] \\
& =\frac{\pi}{3}\left[2\left(\frac{4 \mathrm{r}}{3}\right)^{2} \mathrm{r}-\left(\frac{4 \mathrm{r}}{3}\right)^{3}\right] \\
& =\frac{\pi}{3}\left[2 \times \frac{16}{9} \times \mathrm{r}^{3}-\frac{64}{27} \mathrm{r}^{3}\right] \\
& =\frac{\pi}{3} \mathrm{r}^{3}\left[\frac{32}{9}-\frac{64}{27}\right] \\
& =\frac{\pi}{3} \mathrm{r}^{3} \times \frac{(96-64)}{27} \\
& =\frac{32}{81} \pi \mathrm{r}^{3} \tag{2}
\end{align*}
$$

$\operatorname{Adj}(A)=\left[\begin{array}{ccc}0 & 2 & 1 \\ -1 & -9 & -5 \\ 2 & 23 & 13\end{array}\right]^{\mathrm{T}}=\left[\begin{array}{ccc}0 & -1 & 2 \\ 2 & -9 & 23 \\ 1 & -5 & 13\end{array}\right]$
$\therefore A^{-1}=\frac{1}{|A|}(\operatorname{Adj} A)=\left[\begin{array}{ccc}0 & 1 & -2 \\ -2 & 9 & -23 \\ -1 & 5 & -13\end{array}\right]$
Again, given system of equations is
$2 x-3 y+5 z=11$
$3 x+2 y-4 z=-5$
and $x+y-2 z=-3$

$$
\begin{align*}
& \therefore\left[\begin{array}{ccc}
2 & -3 & 5 \\
3 & 2 & -4 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right] \tag{1}\\
& \Rightarrow A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=A^{-1}\left[\begin{array}{c}
11 \\
-5 \\
-3
\end{array}\right] \tag{1}\\
& =\left[\begin{array}{ccc}
0 & 1 & -2 \\
-2 & 9 & -23 \\
-1 & 5 & -13
\end{array}\right]\left[\begin{array}{l}
11 \\
-5 \\
-3
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \tag{1}
\end{align*}
$$

Hence, $x=1, y=2$ and $z=3$
OR
We know that $\mathrm{A}=\mathrm{IA}$

$$
\Rightarrow\left[\begin{array}{ccc}
-1 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}$.

$$
\Rightarrow\left[\begin{array}{ccc}
1 & -1 & -2 \tag{1}\\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$.
$R_{3} \rightarrow R_{3}-3 R_{1}$.

$$
\Rightarrow\left[\begin{array}{ccc}
1 & -1 & -2 \\
0 & 3 & 5 \\
0 & 4 & 7
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 1 & 0 \\
3 & 0 & 1
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{2} \rightarrow-\mathrm{R}_{2}+\mathrm{R}_{3}$

$$
\Rightarrow\left[\begin{array}{ccc}
1 & -1 & -2 \tag{1}\\
0 & 1 & 2 \\
0 & 4 & 7
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
2 & -1 & 1 \\
3 & 0 & 1
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{1} \rightarrow \mathrm{R}_{1}-\mathrm{R}_{2}$. $R_{3} \rightarrow R_{3}-4 R_{2}$.

$$
\Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1}\\
0 & 1 & 2 \\
0 & 0 & -1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
2 & -1 & 1 \\
-5 & 4 & -3
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{3} \rightarrow-\mathrm{R}_{3}$.

$$
\Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \tag{1}\\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & -1 & 1 \\
2 & -1 & 1 \\
5 & -4 & 3
\end{array}\right] \mathrm{A}
$$

From applying $\mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-2 \mathrm{R}_{3}$.

$$
\begin{align*}
& \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-8 & 7 & -5 \\
5 & -4 & 3
\end{array}\right] \mathrm{A} \tag{1}\\
& \Rightarrow \mathrm{I}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-8 & 7 & -5 \\
5 & -4 & 3
\end{array}\right] \mathrm{A} \\
& \therefore \mathrm{~A}^{-1}=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-8 & 7 & -5 \\
5 & -4 & 3
\end{array}\right] \tag{1}
\end{align*}
$$

26. Suppose,

Event $E_{1}=$ Operator A is chosen
Event $\mathrm{E}_{2}=$ Operator B is chosen
Event $\mathrm{E}_{3}=$ Operator C is chosen
Event $\mathrm{E}_{3}=$ Operator C is chosen
and event $K=$ Defective item is chosen
$\therefore \mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{50}{100}, \mathrm{P}\left(\mathrm{E}_{2}\right)=\frac{30}{100}, \mathrm{P}\left(\mathrm{E}_{3}\right)=\frac{20}{100}$
Now $\mathrm{P}\left(\frac{\mathrm{K}}{\mathrm{E}_{1}}\right)=\frac{1}{100}, \mathrm{P}\left(\frac{\mathrm{K}}{\mathrm{E}_{2}}\right)=\frac{5}{100}, \mathrm{P}\left(\frac{\mathrm{K}}{\mathrm{E}_{3}}\right)=\frac{7}{100}$
So, according to Baye's theorem,

$$
\begin{align*}
P\left(\frac{E_{1}}{K}\right) & =\frac{P\left(E_{1}\right) \cdot P\left(\frac{K}{E_{1}}\right)}{P\left(E_{1}\right) \cdot P\left(\frac{K}{E_{1}}\right)+P\left(E_{2}\right) \cdot P\left(\frac{K}{E_{2}}\right)+P\left(E_{3}\right) \cdot P\left(\frac{K}{E_{3}}\right)} \tag{1}\\
& =\frac{\frac{50}{100} \times \frac{1}{100}}{\frac{50}{100} \times \frac{1}{100}+\frac{30}{100} \times \frac{5}{100}+\frac{20}{100} \times \frac{7}{100}} \tag{1}\\
& =\frac{50}{50+150+140}=\frac{50}{340}=\frac{5}{34}
\end{align*}
$$

Hence, $P\left(\frac{E_{1}}{K}\right)=\frac{5}{34}$
27. Let A, B, C are the points with position vectors $(2 \hat{i}+2 \hat{j}-\hat{k}),(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and $(7 \hat{i}+6 \hat{k})$ respectively, then the required plane passes through the point $\mathrm{A}(2,2,-1)$ and is normal to vector $\overrightarrow{\mathrm{n}}$,
$\therefore \overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}$
Now, $\overrightarrow{\mathrm{AB}}=(3 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+2 \hat{\mathrm{k}})-(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$
$=\hat{i}+2 \hat{j}+3 \hat{k}$
and $\overrightarrow{\mathrm{AC}}=(7 \hat{\mathrm{i}}+6 \hat{\mathrm{k}})-(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})$

$$
\begin{equation*}
=5 \mathrm{i}-2 \hat{\mathrm{j}}+7 \hat{\mathrm{k}} \tag{2}
\end{equation*}
$$

$\therefore \overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & 3 \\ 5 & -2 & 7\end{array}\right|$
$=\hat{i}(14+6)+j(15-7)+\hat{k}(-2-10)=20 i+8 \hat{j}-12 \hat{k}$
Therefore, required plane is $\vec{r} \cdot \vec{n}=\vec{a} \cdot \vec{n}$

$$
\begin{align*}
& \Rightarrow \overrightarrow{\mathrm{r}} \cdot(20 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-12 \hat{\mathrm{k}})=(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}}) \cdot(20 \hat{\mathrm{i}}+8 \hat{\mathrm{j}}-12 \hat{\mathrm{k}}) \\
&=40+16+12=68 \\
& \Rightarrow \overrightarrow{\mathrm{r}} \cdot(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=17 \tag{1}
\end{align*}
$$

\therefore Cartesian equation of the plane is
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(5 \hat{i}+2 \hat{j}-3 \hat{k})=17$
$\Rightarrow 5 \mathrm{x}+2 \mathrm{y}-3 \mathrm{z}=17$
Suppose, equation of plane passing through $(4,3,1)$ and parallel to plane $5 x+2 y-3 z=17$ is given as $5 x+2 y-3 z=d$ $\Rightarrow 5 \times 4+2 \times 3-3 \times 1=\mathrm{d}$
$\therefore \mathrm{d}=20+6-3=23$
Hence, vector equation is $\overrightarrow{\mathrm{r}} .(5 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})=23$
OR
The plane passes through the point $\mathrm{A}(-1,3,-4)$ and contains the line $\frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-1}{2}=\frac{\mathrm{z}}{-1}$ which passes through the point $B(1,10)$ and is parallel to the vector $\vec{b}=\hat{i}+2 \hat{j}-\hat{k}$.
\therefore Required plane passes through point $\mathrm{A}(-1,3,-4)$ and $\mathrm{B}(1,1,0)$ and is parallel to vector $\overrightarrow{\mathrm{b}}$.

Now, $\overrightarrow{\mathrm{n}}=\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{b}}$ where $\overrightarrow{\mathrm{n}} \rightarrow$ normal vector

$$
=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \tag{1}\\
2 & -2 & 4 \\
1 & 2 & -1
\end{array}\right|
$$

$$
\begin{align*}
& =\hat{\mathrm{i}}(2-8)+\hat{\mathrm{j}}(4+2)+\hat{\mathrm{k}}(4+2) \\
& =-6 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+6 \hat{\mathrm{k}} \tag{1}
\end{align*}
$$

\because Required plane passes through $\vec{\alpha}=-\hat{i}+3 \hat{j}-4 \hat{k}$ and is perpendicular to $\vec{x}=-6 \hat{i}+6 \hat{j}+6 \hat{k}$.
\therefore Its vector equation is
$(\vec{r}-\vec{\alpha}) \cdot \overrightarrow{\mathrm{x}}=0$
$\Rightarrow \overrightarrow{\mathrm{r}} \overrightarrow{\mathrm{x}}=\vec{\alpha} \cdot \overrightarrow{\mathrm{x}}$
$\Rightarrow \overrightarrow{\mathrm{r}} \cdot(-6 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})=(-\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}) \cdot(-6 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+6 \hat{\mathrm{k}})$
$\Rightarrow \overrightarrow{\mathrm{r}} \cdot(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=(-\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}) \cdot(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$
$\therefore \overrightarrow{\mathrm{r}} .(-\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=0$
Hence, required length of perpendicular drawn from point $(2,1,4)$ is
$d=\left|\frac{(2 \hat{i}+j+4 \hat{k}) \cdot(-\hat{i}+j+\hat{k})}{\sqrt{(-1)^{2}+(1)^{2}+(1)^{2}}}\right|=\left|\frac{-2+0+4}{\sqrt{3}}\right|=\sqrt{3}$ unit
28. According to the question,

Equation of line $A B$,

$$
\begin{aligned}
(y-5)=\frac{7-5}{4-2}(x-2) & \Rightarrow(y-5)=\frac{2}{2}(x-2) \\
& \Rightarrow y-5=x-2 \\
& \Rightarrow y=x+3
\end{aligned}
$$

Equation of line BC,

$$
(y-7)=\frac{2-7}{6-4}(x-4) \Rightarrow y-7=\frac{-5}{2}(x-4) \Rightarrow y-7=\frac{-5 x}{2}+10 \Rightarrow y=\frac{-5 x}{2}+17
$$

and equation of line CA,

$$
\begin{align*}
& (y-5)=\frac{2-5}{6-2}(x-2) \\
& \Rightarrow y-5=\frac{-3}{4}(x-2) \Rightarrow y-5=\frac{-3 x}{4}+\frac{3}{2} \\
& \Rightarrow y=\frac{-3 x}{4}+\frac{13}{2} \tag{2}
\end{align*}
$$

\therefore Area of $\triangle \mathrm{ABC}=\int_{2}^{4}(\mathrm{x}+3) \mathrm{dx}+\int_{4}^{6}\left(\frac{-5 \mathrm{x}}{2}+17\right) \mathrm{dx}-\int_{2}^{6}\left(\frac{-3 \mathrm{x}}{4}+\frac{13}{2}\right) \mathrm{dx}$

$$
\begin{equation*}
=\left[\frac{x^{2}}{2}+3 x\right]_{2}^{4}+\left[\frac{-5 x^{2}}{4}+17 x\right]_{4}^{6}+\left[\frac{3 x^{2}}{8}-\frac{13}{2} x\right]_{2}^{6} \tag{2}
\end{equation*}
$$

$=(8+12-2-6)+(-45+102+20-68)+\left(\frac{27}{2}-39-\frac{3}{2}+13\right)$
$=12+9-14=7$ unit 2
OR
According to the question,

$\because x^{2}+y^{2}-8 x=0$
\therefore center of circle $=(4,0)$ and radius of circle $=4$
And $y^{2}=4 x$
\therefore Intersection points of circle $x^{2}+y^{2}-8 x=0$ and parabola $y^{2}=4 x$
$\Rightarrow \mathrm{x}^{2}+4 \mathrm{x}-8 \mathrm{x}=0 \Rightarrow \mathrm{x}^{2}-4 \mathrm{x}=0$
$\Rightarrow \mathrm{x}^{2}=4 \mathrm{x}$
$\therefore \mathrm{x}=0$ and $\mathrm{x}=4$
Therefore, intersection points are $(0,0),(4,4)$ and $(4,-4)$

$$
\begin{align*}
\therefore \text { Required area }(A) & =\int_{0}^{4} 2 \sqrt{x} d x+\int_{4}^{8} \sqrt{8 x-x^{2}} d x \tag{1}\\
& =\left[2 \times \frac{2}{3} x^{\frac{3}{2}}\right]_{0}^{4}+\frac{1}{2}\left[(x-4) \sqrt{8 x-x^{2}}+16 \sin ^{-1}\left(\frac{x-4}{4}\right)\right]_{4}^{8} \\
& =\frac{4}{3}(8-0)+\frac{1}{2}\left[\frac{16 \pi}{2}\right] \\
& =\left(\frac{32}{3}+4 \pi\right) \text { unit }^{2} \tag{2}
\end{align*}
$$

29. Suppose, x items of model A and Y items of model B are made every day, then Time constraints for skilled men,

$$
\begin{align*}
& (2 x+y) \leq 5 \times 8 \tag{1}\\
& \Rightarrow 2 x+y \leq 40 \tag{i}
\end{align*}
$$

Time constraints for semi-skilled men,

$$
\begin{align*}
& (2 x+2 y) \leq 10 \times 8 \tag{1}\\
& \Rightarrow 2 x+3 y \leq 80 \tag{ii}
\end{align*}
$$

and non-negative constraints,

$$
\begin{align*}
& x \geq 0 \tag{iii}\\
& \text { and } y \geq 0 \tag{iv}
\end{align*}
$$

Objective function (profit)
On solving the given problem graphically.
For, $2 \mathrm{x}+\mathrm{y}=40$

x	0	20
y	40	0

and for, $2 x+3 y=80$

x	0	40
y	$\frac{80}{3}$	0

Shaded portion OABC is feasible region,

Points	$O(0,0)$	$A(20,0)$	$B(10,20)$	$C\left(0, \frac{80}{3}\right)$
Profit $z=15 x+10 y$	0	300	350	$\frac{800}{3}$

Therefore, at point $\mathrm{B}(10,20)$, the profit z is maximum (350). Hence, for maximum profit, 10 items of model A and 20 items of model B should be made.

