CL Data School

Machine Learning for Working Professionals

Explore a lucrative and rewarding career in machine learning


Faculty: Sujit Bhattacharyya Language: English

Are you ready for the data driven world? Be a part of this course to acquire all the necessary skills by working on datasets provided by our partner companies to become a certified Data scientist. We would take you through all the techniques to build and machine learning models, exciting and employment relevant hands-on projects. At the end of the course you will also receive training on building your machine learning resume and interview preparation.

Courses

We are currently offering the following programs in CL DataSchool:

This course is for students to get a good understanding of machine learning and be ready for a data driven future.

Duration

6 weeks

Placement

Optional Internship
Interview preparation

Learning Mode

Classroom

Green Belt certification

This is a course is for students who have some machine learning fundamentals in place to become an expert in machine learning and neural networks and ready for a promising career in machine learning and artificial intelligence.

Duration

6 Weeks

Placement

Optional Internship
Interview preparation

Learning Mode

Classroom

Brown belt certification

This is a course is for students with a brown belt or equivalent mastery in machine learning to get real world exposure.

Duration

6 Weeks

Placement

Job Guarantee
Interview preparation

Learning Mode

Guided Projects

Black belt certification

The Learning Experience

  • Python and Pandas for Data Handling and Visualization
  • Supervised and unsupervised algorithms
  • Boosting algorithms
  • Feature engineering
  • Natural Language Processing
  • Neural Networks and deep learning
  • Voice technology
  • Industry relevant projects

Learning Belts

We are currently offering courses that can be tailored to fit the constraints and unique industry problems of your industries. You will get access to a team of experts who will for guidance and support and a vast amount of proprietary machine learning content for learning along with unique data and problems tailor made for your company and industry.

As in Karate, the colour of the belt can easily judge about the rank and the level of expertise of any ML professional. White represents the entry level while Black represents the true expert at the highest rank. Yellow, Orange, Red, Green, Blue and Brown are the intermediate colours representing the growing levels of expertise.

White belt : (14 hours - Starter)

Usually, this is given at the end of a 14-hour program that covers the basics of statistics, understanding of python and solving some open data problems as exercises. This belt depicts you as a person who has started to learn Machine Learning.

Green Belt : (35 hours – Professional)

A 35-hour program comprising sound understanding of all three elements of knowledge of math/statistics, comfort with handling python code and voice-bot coding gets you to be a GreenBelt. A 75pc assessment score is a pre-requisite for Green Belt certification. This program is delivered over a 5-day period and also counts for the in-service training in govt institutions.

Brown Belt : (60 hours – Expert)

Usually, this level of expertise signifies that you have reached the half expertise level by expanding knowledge, learning new techniques, submitted capstone/real world problems with adequate levels of success. About 60 hours of coaching and learning with mock/masked real data and over 75 percent in assessments earns you a Brown Belt. From an academic benchmarking stand-point this is equal to completing 6 credit course.

Black belt : (120 hours – Master Certification)

This colour signifies that you have mastered all the skills enough for the machine learning world to consider you her master. An evidence of your expertise in machine learning comes from organisations and institutions seeking your guidance to solve their real world problems. From an academic institutions stand-point, this Blackbelt Master certification program would be equivalent to 12-credit points in engineering or Management.

FAQ

Thanks to the media, most of us are aware of the promise and the potential of AI. We even have a somewhat good idea of what it is being used for today. But as the development of artificial intelligence progresses it is no longer something that we can just appreciate from afar. While AI is expected to one day be able to replace all of our jobs, the more immediate impact is in its ability to analyse and bring meaningful insights and predictions from the vast stockpiles of data available to companies today. The sub domain of artificial intelligence that deals with this field is machine learning. The biggest differentiator going forward for businesses will be in their mastery of the possibilities and limitations of machine learning.

Unlike other innovations in the past, being on top of the machine learning revolution is not as straightforward as having machine learning specialists in every company. Everyone will need to be well versed in the application of machine learning. Just as one cannot in this day and age function without being able to read and write, in tomorrow’s world machine learning will become the new literacy. According to the World Economic Forum1, over half of the jobs in the world will be impacted by artificial intelligence in the next five years and many of those people will need to be reskilled.

Along with the great advances of machine learning came the democratization of machine learning. A vast array of powerful tools are available for everyone and they are free to use free to take apart, learn from and improve upon. It is now easier than ever before to get your toes wet in machine learning. No longer is it solely the domain of the upper echelons of mathematicians and computer scientists. Not only can anyone learn machine learning, everyone should learn it.

The bar of entry to become proficient in machine learning is surprisingly low. You can start today with a knowledge of grade school mathematics, a computer and a willingness to learn.

Should I learn Online ? While online learning is the dominant platform to learn machine learning today, it’s not for everyone. While many, including our in house data science team have learnt from online courses, we feel it is inferior to the experience of classroom coaching. One needs a very strong drive to complete an online course as evidenced by the very high dropout rates among the viewers of Andrew Ng’s videos. There is also little to no recourse for doubt clarification if you are stuck with something.

There are many applications of machine learning to sales roles. For example machine learning can be used to interpret and gain meaningful insights from customer data. Having a data driven understanding of your customer base is gives your company an edge in making marketing decisions as you can know what your customers want with data rather than intuition. Forecasting is another sales task that is falls squarely in the domain of things machine learning excels at. Given enough data, machine learning models can make very accurate sales forecasts with little human intervention or effort. Sales communication is another forte of machine learning as many simple to moderately complex enquiries about sales or promotions can be handled by AI chatbots or machine learning enabled email reply bots leaving the humans to handle the more creative and complex tasks. Machine learning can also be employed to track the discussions and opinions of your brand on social media and even make intelligent responses to maintain a positive atmosphere around the brand.

There are a number of HR functions that can either be enhanced or done entirely by AI. Attrition detection is one of the most important functions of HR, understanding why employees stay at or leave a job is a good job for machine learning. Given the data, machine learning algorithms may find patterns and insights into employees decisions that HR professionals may overlook. This data can then be used to make corrections in HR policies. Processing prospective employees is another major task. It requires HR professionals to dig through a vast number of CVs to find the right candidate. Often times the best candidates get offers elsewhere before you can get a chance to see his or her resume, so speedy turnaround times are also necessary. Machine learning algorithms make combing through large number of resumes an easy task so you can get the perfect candidate before everyone else.

Definitely! While a background in mathematics or programming will no doubt be an invaluable asset to a data scientist, one does not need it to apply machine learning to their businesses. The most essential ingredients in becoming a good data scientist are creativity and a mastery of the data.

Contact Us

Have questions? Our data science team is more than happy to take them:-

Ayush Joshi - ayush.joshi@careerlauncher.com
Mythreya Lingala - mythreya.lingala@careerlauncher.com

At a glance

  • 14-120 hours
  • Enquire now for pricing
  • unique classroom program
  • Hands-on & project oriented